

© 2008 360Data
http://www.360data.nl

1

Real World Foreach Loop Container example

Looping operations in SQL Server Integration Services

The Foreach Loop container is one of the most flexible and useful controls available
to SQL Server Integration Services developers, but the fact that it's relatively poorly
documented means that it may not get used as often as it deserves.

In this example I'll describe how I used it to build a workaround for a problem in SQL
Server log shipping. Due to low disk space we needed to delete log files as soon as
they were no longer needed without changing the log maintenance configuration,
but this had to be both automated and failsafe. The Foreach Loop container made
this possible. You can adapt this solution for any situation where operations need to
be regularly performed on an unknown number of files with no fixed filenames.

I'm assuming that you're familiar with using the SQL BI Dev Studio tools and building
basic packages. If this isn't
the case, I recommend
working your way through
the Integration Services
Tutorial in SQL Books Online
to become familiar with the
basic concepts. Jamie
Thomson's blog is an
invaluable resource when
you're ready to go further
with SSIS.

Connections and Variables

I defined two connections in
a new SSIS package, a
regular SQL Server data
source pointing towards the
SQL log shipping
monitor/target server and
an ADO.NET connection
pointing towards TEMPDB
on the target SQL server.

I also defined four package-
scoped variables (as shown

2

below). These will be explained in more detail as we go on.

Setting the stage

The first step was an Execute SQL Task that creates a temporary table for the list of
filenames we'll be handling. I used the TEMPDB connection and added this code to
the SQLStatement property with a SQLSourceType of 'Direct input':

if not exists (select *
 from tempdb..sysobjects
 where xtype = 'U'
 and name = 'tmpTLogFileList')

create table tmpTLogFileList
 (id int identity(1, 1) not null,
 FileName nvarchar(128) not null)
else

truncate table tmpTLogFileList

© 2008 360Data
http://www.360data.nl

3

Building the list of files

The next step was to populate this table with a list of files found in a given folder. To
do this I added a Foreach Loop Container to the package. On the Collection tab I
selected the 'Foreach File enumerator' and entered the path to the folder. I could
have used a variable here, but in this case the path was fixed so that wasn't
necessary. The 'Name and extension' option was also selected.

4

On the 'Variable Mappings' tab I added a mapping to the varTLogFileName variable I
defined earlier. The Foreach Loop will move through each file in the folder I defined
and update this variable each time with each file name it encounters.

The container's properties were now correctly set. I then added a Execute SQL task
within the container. This used the TEMPDB connection again with the following
code:

insert into tmpTLogFileList (FileName)

values(@FileName)

On the 'Parameter Mapping' tab I added the varTLogFileName variable as an Input
parameter with a mapping to the @FileName variable used in the SQL command (as
shown above). At runtime, the Loop container runs this command once for each
filename and the tmpTLogFileList SQL table is populated.

© 2008 360Data
http://www.360data.nl

5

Checking which files can be safely deleted

I now had a table with a complete list of all the files found in the folder, but in this
particular case I needed to be sure that these backup files had been correctly
restored on the log shipping target server before deleting them.

I created a Data Flow task to build the list of files to be deleted. The source was an
OLE DB connection to the log shipping target SQL server with a SQL query joining the
tmpTLogFileList table with the system table used by SQL to store the restore status:

select FileName
from tempdb.dbo.tmpTLogFileList
where id <=
 (select id - 16
 from tempdb.dbo.tmpTLogFileList
 where FileName in
 (select max(last_file)
 from msdb.dbo.log_shipping_plan_history
 where succeeded = 1
 and activity = 1)
)
and FileName like '%.TRN'

(The 'ID - 16' select merely ensures that the newest 16 backup files are always
excluded from the delete in any case, as an additional safety measure).

The result set is a single-column list of filenames. I stored this in the Object variable
varDeleteFileList that I'd created earlier using a Recordset Destination control with
the 'VariableName' Custom Property set to varDeleteFileList as shown above.

6

Deleting the files

After this last step I now had a variable containing the list of files that could be safely
deleted. To actually delete these files I added another Foreach Loop Container to my
package.

This time I selected the 'Foreach ADO enumerator' as the enumerator type. I
selected the varDeleteFileList variable from the ADO object source variable list and
added a mapping to the varDeleteFileOName variable on the Variable Mappings tab.
This is an Object-typed variable, allowing me to store a recordset. This recordset is
then used to delete the files one-by-one as follows.

© 2008 360Data
http://www.360data.nl

7

I added a Script task in the container. This was necessary in order to convert the
value of the varDeleteFileOName variable from an Object to a string that could be
used in the File System Task step (described below).

8

The Script Task was defined as follows:

The script code is short and simple:

Imports System

Imports System.Data

Imports System.Math

Imports Microsoft.SqlServer.Dts.Runtime

Public Class ScriptMain

Public Sub Main()

Dim varStringFileName As String

varStringFileName =

Dts.Variables("varDeleteFileOName").Value.ToString

Dts.Variables("varDeleteFileSName").Value =

"\\SERVERNAME\TLog_Backups\" + varStringFileName

Dts.TaskResult = Dts.Results.Success

End Sub

End Class

© 2008 360Data
http://www.360data.nl

9

The path listed in the code is, of course, a hard-coded reference to the folder where
the files to be deleted are stored but could also be populated by a variable if you so
choose. The varDeleteFileSName variable is populated with a string-valued path and
file name and the Script Task is complete.

The last step in the package was to add a File System Task inside the second Foreach
Loop container. On the 'General' tab I selected 'Delete file' in the Operation drop-
down, 'True' for IsSourcePathVariable and varDeleteFileSName as the
SourceVariable.

10

And that's it! Running the package deletes all backup files that haven't been restored
except the newest sixteen. I deployed the package to the production SSIS server and
scheduled it with a regular SQL job to run hourly.

This is a fairly simple example that doesn't include much error-trapping, logging and
so on, but I hope that it at least illustrates the power and flexibility of the Foreach
Loop Container in SQL Server Integration Services.

Paul Clancy
360Data
http://www.360data.nl

Links and References

SQL Books Online – SSIS Basics Tutorial
http://msdn2.microsoft.com/en-us/library/ms169917.aspx

Jamie Thomson’s SSIS Blog
http://blogs.conchango.com/jamiethomson/

This article was originally published on SQLServerCentral.com in February 2008.
http://www.sqlservercentral.com/articles/SSIS/61987/

SQL Server Central
http://www.sqlservercentral.com/

http://msdn2.microsoft.com/en-us/library/ms169917.aspx
http://blogs.conchango.com/jamiethomson/
http://www.sqlservercentral.com/articles/SSIS/61987/
http://www.sqlservercentral.com/

