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ABSTRACT 

The radiation pattern of an antenna array depends strongly on the weighting method 

and the geometry of the array.  Selection of the weights has received extensive attention, 

primarily because the radiation pattern is a linear function of the weights.  However, the 

array geometry has received relatively little attention even though it also strongly 

influences the radiation pattern.  The reason for this is primarily due to the complex way 

in which the geometry affects the radiation pattern.  The main goal of this dissertation is 

to determine methods of optimizing array geometries in antenna arrays.   

An adaptive array with the goal of suppressing interference is investigated.  It is 

shown that the interference rejection capabilities of the antenna array depend upon its 

geometry.  The concept of an interference environment is introduced, which enables 

optimization of an adaptive array based on the expected directions and power of the 

interference.  This enables the optimization to perform superior on average, instead of for 

specific situations.  An optimization problem is derived whose solution yields an optimal 

array for suppressing interference.  Optimal planar arrays are presented for varying 

number of elements.  It is shown that, on average, the optimal arrays increase the signal-

to-interference-plus-noise ratio (SINR) when compared to standard arrays.  

Sidelobe level is an important metric used in antenna arrays, and depends on the 

weights and positions in the array.  A method of determining optimal sidelobe-

minimizing weights is derived that holds for any linear array geometry, beamwidth, 

antenna type and scan angle.  The positions are then optimized simultaneously with the 

optimal weights to determine the minimum possible sidelobe level in linear arrays.  

http://www.antenna-theory.com/basics/radPattern.html
http://www.antenna-theory.com/arrays/weights/lms.php
http://www.antenna-theory.com/basics/radPatDefs.php
http://www.antenna-theory.com/basics/radPatDefs.php
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Results are presented for arrays of varying size, with different antenna elements, and for 

distinct beamwidths and scan angles. 

Minimizing sidelobes is then considered for 2D arrays.  A method of determining 

optimal weights in symmetric 2D arrays is derived for narrowband and wideband cases.  

The positions are again simultaneously optimized with the weights to determine optimal 

arrays, weights and sidelobe levels.  This is done for arrays with varying number of 

elements, beamwidths, bandwidths, and different antenna elements.     

 

 

http://www.antenna-theory.com/arrays/weights/twoDuniform.php
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I.   INTRODUCTION 

1.1. Overview 

On December 12, 1901, Guglielmo Marconi successfully received the first trans-

atlantic radio message [1].  The message was the Morse-code for the letter ‘S’ – three 

short clicks.  This event was arguably the most significant achievements in early radio 

communication.  This communication system, while technically functional, clearly had 

significant room for improvement. 

A century of improvement in the field of wireless communication has occurred.  

The envelope has been pushed in every imaginable direction, with no letup in progress 

likely in the foreseeable future.  Development in the fields of electronics, information 

theory, signal processing, and antenna theory have all contributed to the ubiquity of 

wireless communication systems today.  However, despite the tremendous advances since 

the days of Marconi in each of these fields, the desire for improved wireless 

communication systems has not been quenched.   

The concept of an antenna array was first introduced in military applications in the 

1940s [2].  This development was significant in wireless communications as it improved 

the reception and transmission patterns of antennas used in these systems.  The array also 

enabled the antenna system to be electronically steered – to receive or transmit 

information primarily from a particular direction without mechanically moving the 

structure. 

As the field of signal processing developed, arrays could be used to receive energy 

(or information) from a particular direction while rejecting information or nulling out the 

energy in unwanted directions.  Consequently, arrays could be used to mitigate 

http://www.antenna-theory.com/
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intentional interference (jamming) or unintentional interference (radiation from other 

sources not meant for the system in question) directed toward the communication system.   

Further development in signal processing led to the concept of adaptive antenna 

arrays.  These arrays adapted their radiation or reception pattern based on the 

environment they were operating in.  This again significantly contributed to the capacity 

available in wireless communication systems.   

While there has been a large amount of work on the signal processing aspects (and 

in conjunction, the electronics used to implement the algorithms), the physical geometry 

(or location of the antenna elements in the array) has received relatively little attention.  

The reason for this lies in the mathematical complexity of dealing with the optimization 

of the element positions for various situations.  As shown in Chapter 2, understanding the 

influence of the element weighting (which is a major component of the signal processing 

involved in antenna arrays) is significantly simpler than understanding the effect of 

varying the positions of the elements. 

Thanks to the tremendous advances in numerical computing, optimization of the 

element positions in an antenna array (for various situations) is now tractable.  The 

primary goal of this dissertation is to study the influence of array geometry on wireless 

system performance.  It will be shown that performance gains can be obtained via 

intelligent selection of the array geometry.  Array geometry optimization can therefore be 

hoped to contribute to the continuing advancement of wireless communication system 

performance. 
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This dissertation is organized as follows.  Chapter 2 introduces the main ideas and 

terminology used in understanding antenna arrays.  Chapter 3 discusses various 

optimization methods used in this work.  Chapter 4 discusses methods of choosing the 

weighting vector applied in the antenna array.  Chapters 2-4 are primarily a collection of 

other’s work. 

Chapters 5-7 represent the author’s original research for this dissertation.  Chapter 5 

deals with a specific problem in a wireless communication system, namely interference 

suppression in an adaptive array.  An optimization problem is derived whose solution 

yields an optimal array for a given interference environment, as defined in that chapter.  

Solutions of this optimization problem (that is, array geometries) are presented for a 

specific situation and the gains in performance are illustrated. 

Chapter 6 deals with the minimum possible sidelobe level for a linear antenna array 

with a fixed number of elements.  A method of determining the optimal sidelobe-

minimizing weight vector is determined that holds for an arbitrary antenna type, scan 

angle, and beamwidth.  This method of weight selection, coupled with a geometrical 

optimization routine, yield a lower bound on sidelobe levels in linear antenna arrays.  The 

minimum sidelobe levels of arrays with an optimized geometry are compared to those 

with a standard (or non-optimized) geometry.  The methods are employed on arrays of 

varying size and beamwidths, and with different types of antenna elements. 

Chapter 7 deals with the determination of minimum sidelobe levels in planar or 

two-dimensional arrays.  The method of weight selection is extended from the linear to 

the planar case along with the geometrical optimization routine.  Two-dimensional arrays 
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are optimized of varying sizes and beamwidths, and made up of different antenna types.  

The narrowband assumption is then discarded and optimal weights are derived for the 

wideband situation.  Optimal geometries are then presented for the wideband case for 

arrays made up of both omnidirectional and patch antenna elements. 

Chapter 8 summarizes the important results and presents conclusions based on the 

solutions.  Finally, future problems of interest are discussed.  The remainder of this 

chapter presents a literature survey of previous research on array geometry optimization. 

1.2. Literature Survey 

The first articles on improving array performance via geometry optimization dates 

back to the early 1960s.  Unz [3] studied linear arrays in 1960 and noted that performance 

improvement could be obtained by holding the weights constant and varying the element 

positions.  In 1960, King  [4] proposed eliminating grating lobes via element placement 

in an array.  In 1961, Harrington [5] considered small element perturbations in an attempt 

to synthesize a desired array pattern.   

The concept of ‘thinned arrays’ was introduced in the early 1960s as well.  It was 

noted that in large, periodically spaced antenna arrays, removing some of the elements 

did not noticeably degrade the array’s performance.  This method of altering an array’s 

geometry was introduced by Skolnik et al. [6] and was first studied deterministically – 

attempting to systematically determine the minimum number of elements required to 

achieve a desired performance metric.  For large arrays, the problem was tackled in a 

statistical fashion to avoid the excessive amount of computation time required to 

determine an optimal thinned array [7]. 

http://www.antenna-theory.com/arrays/geometry/thinnedarrays.php
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Stutzman [8] introduced a simple method of designing nonuniformly spaced linear 

arrays that is based on Gaussian-quadrature that involves fairly simple calculations.  In 

addition, he showed that by appropriate scaling of the element spacings, some of the 

elements will lie in the region where the ideal source has a small excitation, and thus can 

be omitted from the array (another method of array thinning).   

Array geometry plays a critical roll in the direction-finding capabilities of antenna 

arrays.  Pillai et al. [9] shows that for linear aperiodic arrays, there exists an array that has 

superior spatial-spectrum estimation ability.  Gavish and Weiss [10] compared array 

geometries based on how distinct the steering vectors are for distinct signal directions; 

they proposed that larger distinctions lead to less ambiguity in direction finding.  Ang et 

al. [11] also evaluated the direction-finding performance of arrays by varying the 

elements’ positions based on a genetic algorithm. 

Antenna arrays are also used for diversity reception, or comparing signal power at 

spatially distinct locations and processing the signals based on their relative strength.  A 

textbook proof analyzing uniformly distributed multipath components suggest arrays will 

exhibit good diversity characteristics if the antennas are separated by at least  0.4λ  [12]. 

An analytical method of choosing a linear array geometry for a given set of weights 

is presented in [13]; this method was also extended to circular and spherical arrays [14].  

This method requires a specified array pattern and set of weights; it then attempts to 

determine an array geometry that closely approximates the desired array pattern.  The 

method does not guarantee a global optimum for the element positions.  In [15] the 

weights are optimized and then linear array scaled to find an optimal geometry.  A 

http://www.antenna-theory.com/arrays/diversity.php
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method of perturbing element positions to place nulls in desired directions is described in 

[16]. 

Due to the large increase in the computational capability of computers, array 

geometry optimization has been under investigation recently using biologically inspired 

algorithms, such as Genetic Algorithms (GA).  Khodier and Christodoulou [17] used the 

Particle Swarm Optimization (PSO) method to determine optimal sidelobe-minimizing 

positions for linear arrays assuming the weights were constant.  In [18], PSO methods 

were used for planar array synthesis in minimizing sidelobes, along with null-placement.  

Tennant et al. [19] used a genetic algorithm to reduce sidelobes via element position 

perturbations.  In [20], the authors demonstrate sidelobe minimization by choosing a 

geometry based on the Ant Colony Optimization (ACO) method. 

In addition to geometry considerations, the minimum possible sidelobe level for an 

array is of interest.  For linear, equally spaced arrays, the problem of determining the 

optimal weights was solved by Dolph and published in 1946 [21].  This method is known 

as the Dolph-Chebyshev method, because Dolph uses Chebyshev polynomials to obtain 

the excitation coefficients.  The method returns the minimum possible null-to-null 

beamwidth for a specified sidelobe level (or equivalently, the minimum possible sidelobe 

level for a specified null-to-null beamwidth).  This method has an implicit maximum 

array spacing for a given beamwidth [22].  Riblet [23] showed that for arrays with 

interelement spacing less than 2/λ , there exists a set of weights that give a smaller null-

to-null main beam than Dolph’s method.  However, Riblet only derives the results for 

arrays with an odd number of elements.  The Dolph-Chebyshev method produces 
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sidelobes that have equal amplitudes.  A more generalized version of Dolph’s algorithm 

(called an equiripple filter) is also frequently used in the design of Finite Impulse 

Response (FIR) filters in the field of signal processing [24]. 

 In 1953, DuHamel extended the work of Dolph to endfire linear arrays with an odd 

number of elements [25].  Dolph’s work was also considered for the case of non-isotropic 

sensors; the problem was not solved for the general case [26].  The optimum sidelobe-

minimizing weights for broadside, non-uniformly spaced symmetric linear arrays with 

real weights can now be found using linear programming [27].  The general case of non-

uniform arrays with arbitrary scan angle, beamwidth and antenna pattern is derived in 

Chapter 6.  In [28], the authors attempt to simultaneously optimize the weights and the 

positions of a 25-element linear array using a Simulated Annealing (SA) algorithm.  They 

make no claim that their results are optimal, but do show the sidelobes lowered via the 

optimization method.  Adaptive antenna arrays began with the work of Bernard Widrow 

in the 1960s [29].  Optimizing an adaptive antenna array’s geometry was performed in 

[30] with regards to suppressing interference; this work is the subject of Chapter 5. 

The effect of array geometry on wireless systems in urban environments using 

Multiple-Input Multiple-Output (MIMO) channels has been studied [31].  The array 

geometry is shown to have a significant impact on the MIMO channel properties, 

including the channel capacity.  Because of the difficulty in examining array geometry 

and determining an optimal array, the impact of geometry on performance was studied by 

considering standard arrays such as the uniform linear array.  The effect of array 

orientation on MIMO wireless channels was investigated in [32]. 



 

II.   FUNDAMENTAL CONCEPTS OF ANTENNA ARRAYS 
 

2.1.   Introduction 

An antenna array is a set of N spatially separated antennas.  Put simply, an array of 

antennas does a superior job of receiving signals when compared with a single antenna, 

leading to their widespread use in wireless applications. 

Arrays in practice can have as few as N=2 elements, which is common for the 

receiving arrays on cell phone towers.  In general, array performance improves with 

added elements; therefore arrays in practice usually have more elements.  Arrays can 

have several thousand elements, as in the AN/FPS-85 Phased Array Radar Facility 

operated by U. S. Air Force [33]. 

The array has the ability to filter the electromagnetic environment it is operating in 

based on the spatial variation of the signals present.  There may be one signal of interest 

or several, along with noise and interfering signals.  The methods by which an antenna 

array can process signals in this manner are discussed following an elementary discussion 

of antennas. 

2.2.  Antenna Characteristics 

Throughout this dissertation, a Cartesian coordinate system with axis labels x, y, 

and z will be used along with spherical coordinates θ  (polar angle ranging from 0 to π , 

measured off the z-axis) and φ  (azimuth angle ranging from 0 to π2 , measured off the 

x-axis).  The coordinates are illustrated in Figure 1. 

A physical antenna has a radiation pattern that varies with direction.  By reciprocity, 

the radiation pattern is the same as the antenna’s reception pattern [34], so the two can be 

discussed interchangeably.  The radiation pattern is also a function of frequency; 

http://www.antenna-theory.com/
http://www.antenna-theory.com/definitions/reciprocity.php
http://www.antenna-theory.com/basics/frequency.html
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however, except where noted, it will be assumed a single frequency is of interest 

(described by the corresponding wavelengthλ ).  The radiation pattern takes different 

shapes depending on how far the observation is from the antenna – these regions, in order 

of increasing distance from the antenna, are commonly called the reactive near-field 

region, the radiating near-field (Fresnel) region and the far-field (Fraunhofer) region [22].  

For an antenna of maximum length D, the far-field region occurs when the following two 

conditions are met: 

                                                             
λ

22D
R >                                                        (2.1) 

λ>>R .                                                         (2.2) 

For a modern cellular phone operating at 1.9 GHz with an antenna length of roughly D=4 

cm, both inequalities are achieved for R>2 meters.  In practice, antennas communicate in 

the far-field region, and this is assumed throughout. 

The radiated far-zone field of an antenna will be described by the function 

),,( φθRF .  For example, the far-zone field radiated by a short dipole of length L with 

uniform current I is given by [33]: 

θ
η

φθ sin
2

),,( 0

R
ejIL

RF
jkR−

=                                          (2.3) 

where 1−=j , 0η  is the impedance of free space, and λπ /2=k  is the wavenumber.   

The normalized field pattern will be of frequent interest in this work.  This function, 

denoted by ),( φθf , describes the angular variation in the reception pattern of the 

antenna.  For the short dipole, the normalized field pattern is expressed as 

θφθ sin),( =f .                                                    (2.4) 

http://www.antenna-theory.com/basics/fieldRegions.php
http://www.antenna-theory.com/antennas/shortdipole.php
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This field pattern is plotted in Figure 1.  The horizontal axis in Figure 1(a) can be the x- 

or y-axis; due to symmetry the elevation pattern will not change. 

 

              (a)  Elevation Pattern                                (b)  Azimuthal Pattern 

Figure 1.  (a) Elevation and (b) azimuthal patterns for a short dipole. 

Directivity (or maximum directivity) is an important antenna parameter that 

describes how much more directional an antenna is from a reference source, usually an 

isotropic radiator.  An antenna with a directivity of 1 (or 0 dB) would be an isotropic 

source; all actual antennas exhibit a directivity higher than this.  The higher the 

directivity, the more pointed or directional the antenna pattern will be.  Directivity, D, 

can be calculated from 

∫ ∫

=
π π

φθθφθ

π
2

0 0

  sin)],([

4

2 ddf

D .                                      (2.5) 

The directivity of the short dipole discussed previously is 1.5 (1.76 dB). 

http://www.antenna-theory.com/basics/directivity.php
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Antennas are further described by their polarization.  The polarization of an antenna 

is the same as the polarization of its radiated fields.  The polarization of the radiated field 

is the figure traced out by the electric field at a fixed location in space as a function of 

time.  Common polarizations are linear, elliptical and circular polarization.  The 

polarization of the short dipole is linear.   

If an antenna is attempting to receive a signal from an electromagnetic wave, it 

must be matched to the polarization of the incoming wave.  If the wave is not matched to 

the antenna, part or all of the energy will not be detected by the antenna [22].   In this 

dissertation, unless otherwise noted, it will be assumed that the antennas are properly 

matched in polarization to the desired waves. 

Further information on antennas can be found in several popular textbooks [22, 35-

36].  The preceding discussion will be sufficient for the purposes in this work. 

2.3.   Wireless Communication 

The primary purpose of antenna systems is for communication; however, they are 

also used for detection [37].  The information to be transmitted or received will be 

represented by m(t).  The message m(t) will be assumed to be band-limited to B Hz, 

meaning almost all the energy has frequency content below B Hz.  In the earlier days of 

radio, m(t) had the information coded directly into the amplitude or frequency of the 

signal (as in AM or FM radio).  Information today is primarily encoded into digital form, 

and m(t) is a train of a discrete set of symbols representing 1s and 0s.  The information is 

still encoded into the amplitude and phase of these symbols; however, the amplitudes and 

phases now take on a discrete set of values.  In the most basic form of digital 

http://www.antenna-theory.com/basics/polarization.php
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communication, binary phase shift keying (BPSK), m(t) is either +1 or -1 (representing a 

1 or a 0), so that the information is encoded into the phase.  Note that m(t) can be 

complex, where the real part represents the in-phase component of the signal and the 

imaginary part corresponds to the quadrature component [38].  Digital communication is 

used because of its high data rate, lower probability of error than in analog 

communication (along with error-correcting codes), high spectral efficiency and high 

power efficiency [12]. 

The message m(t) is then modulated up to the frequency used by the antenna 

system.  The transmitted signal s(t) is given by 

   tfjetmts cπ2)()( =                                                (2.6) 

where cf is the carrier (or center) frequency used by the antenna system.  Note that in 

general cfB << .  Typically, the energy then lies within the frequency spectrum in a very 

narrow band around cf , so that the transmitted signal is assumed to be a monochromatic 

plane wave.  If the signal is sufficiently broadband that the narrowband assumption 

cannot be applied, the signal can be processed by filtering it into distinct narrow bands 

and processing each separately. 

In the far field the narrowband signal will have the characteristics of a 

monochromatic plane wave.  Assume that the wave is traveling in the direction defined 

by ),( φθ  relative to a reference point (for instance, a receiving antenna).  The wavevector 

k is defined to represent the magnitude of the phase changes along the x-, y-, and z-

directions: 

http://www.thefouriertransform.com/applications/filtering.php
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)cos,sinsin,cos(sin
2

),,( θφθφθ
λ
π

== zyx kkkk .                       (2.7) 

The spatial variation of the signal can then be written as 

)(
)(),,,(

zkykxkj
etstzyxS zyx ++−

= .                                (2.8) 

Defining the position vector as R=(x,y,z), (2.8) can be written more compactly as 

RkR ⋅−= jetstS )(),( .                                              (2.9) 

Digital signal processors operating on a single antenna can only process signals based on 

their time variation.  Space-time filters process signals based on their spatial and temporal 

variation [39].  In order to do spatial filtering, an array of sensors is required. 

2.4.   Antenna Arrays 

The basic setup of an arbitrary antenna array is shown in Figure 2.  The location of 

the thn  antenna element is described by the vector nd , where 

[ ]nnn zyx     n=d .                                               (2.10) 

The set of locations of an N-element antenna array will be described by the N-by-3 matrix 

D, where 



















=

Nd

d

d

D
M 

2

1

.                                                     (2.11) 

When the array is linear (for example, all elements placed along the z-axis), the matrix D 

can be reduced to a vector.  
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Figure 2.  Arbitrary antenna array geometry. 

Let the output from the thn  antenna at a specific time be nX .  Then the output from 

antenna n is weighted (by nw ), and summed together to produce the antenna array output, 

Y, as shown in Figure 3.  See chapter 3 for a discussion of weighting methods.  The array 

output can be written as    

∑
=

=
N

n
XwY nn

1
.                                                (2.12) 

Defining 



















=

NX

X

X

M  
2

1

X                                                     (2.13) 

and 
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

















=

Nw

w

w

M  
2

1

W ,                                                    (2.14) 

then (2.12) can be rewritten in compact form as 

XWTY = ,                                                     (2.15) 

where T represents the transpose operator. 

 

 

Figure 3.  Spatial processing of antenna array signals. 
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2.5.   Spatial Processing Using Antenna Arrays 

Suppose the transmitted signal given by (2.9) is incident upon an N-element antenna 

array.  Let the normalized field pattern for each antenna be described as a function of the 

wavevector (k) and be represented by f(k).  The array output is then 

  ∑
=

⋅−
=
N

n
fjetswty n

n

1
)()()( k

dk
.                                    (2.16) 

If the elements are identical, (2.16) reduces to 

 













=

⋅−= ∑
N

n

jewftsty n
n

1
)()()( dkk .                                   (2.17) 

The quantity in parenthesis is referred to as the array factor (AF).  Hence, the output is 

proportional to the transmitted signal, multiplied by the element factor and the array 

factor.  This factoring is commonly called pattern multiplication, and it is valid for arrays 

with identical elements oriented in the same direction. 

A very general form for the output of an array is when there are G incident signals 

(with wavevectors Gii K,2 ,1  , =k ) incident on N antennas with distinct patterns (given 

by Nif i ,,2 ,1  ),( K=k ).  Then the output is 

∑ ∑
= =

⋅−=
N

n

G

i

jewftsty ni
nini

1 1
)()( )( dkk .                              (2.18) 

For one-dimensional arrays with elements along the z-axis (linear array),  

) 0, ,0( nn z=d .                                                (2.19) 

Using (2.7), the AF reduces to 

http://www.antenna-theory.com/arrays/arrayfactor.php
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∑
=

−
=
N

n

zj
ewAF

n

n

1

cos2 θ
λ
π

.                                       (2.20) 

The one-dimensional array factor is only a function of the polar angle.  Hence, the array 

can filter signals based on their polar angle θ  but cannot distinguish arriving signals 

based on the azimuth angle φ . 

For two-dimensional arrays with elements on the x-y plane, the array factor 

becomes [22] 

∑
=

+−
=
N

n

yxj
ewAF

nn

n
1

)sinsincossin(2 φθφθ
λ
π

.                       (2.21) 

The array factor is a function of both spherical angles and can therefore filter signals 

based on their azimuth and elevation angles.   

The effect of the array on the received signal as a function of the angle of arrival is 

now illustrated by examining the array factor.  An N-element array will be analyzed.  For 

simplicity let 1=nw  for all n, and let )2/  0,  ,0( λnn =d .  Then (2.19) reduces to 

∑
=

−=
N

n

jneAF
1

cosθπ .                                         (2.22) 

Using the identity 

c
c

c
NN

n

n

−
−

=∑
−

= 1
11

0

,                                                 (2.23) 

it follows that (2.21) can be written as 















−−

−−
= θπ

θπθπ
cos1

cos1cos
je

jNejeAF .                               (2.24) 
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After factoring, the above equation simplifies to 


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

































−

−

=

2
cos

sin

2
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θπ
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θπ

θπ

θπ
N

j
e

Nj
ejeAF .                       (2.25) 

The magnitude of the array factor is plotted in Figure 4 for an array with N=5 elements, 

normalized so that the peak of the array factor is unity or 0 dB.  The magnitude of the 

array factor shows that the array will receive (or transmit) the maximum energy when 

°= 90θ .  Manipulation of the weights will allow the array factor to be tailored to a 

desired pattern, which is the subject of Chapter 3.  In addition, the response of the array 

factor is strongly influenced by the specific geometry (D) used.  Selection of the weights 

is a simpler problem, as they array factor is a linear function of the weights.  The array 

factor is a much more complicated function of the element positions; hence, optimizing 

array geometry is highly non-linear and exponentially more difficult. 
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Figure 4.  Magnitude of array factor for N=5 elements. 

 
Directivity can be calculated for an array factor in the same manner as that of an 

antenna.  In addition, important parameters of array factors include beamwidth and 

sidelobe level.  The beamwidth is commonly specified as null-to-null or half-power 

beamwidth.  The null-to-null beamwidth is the distance in degrees between the first nulls 

around the mainbeam.  The half-power beamwidth is the distance in degrees between the 

half-power points (or 3 dB down on the array factor) around the mainbeam.  The sidelobe 

level is commonly specified as the peak value of the array factor outside of the 

mainbeam. 

As an example, the array factor for a 3x3 rectangular array is examined.  The 

weights will again be uniform; i.e. 1=nw  for all n.  The positions for the N=9 element 
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array will be )0  ,2/  ,2/( λλ baab =d  for a,b=0,1,2.  From (2.21), the array factor 

becomes 

∑ ∑
= =

+−=
2

0

2

0

)sincos(sin 
b a

bajeAF φφθπ .                        (2.26) 

Applying the sum formula (2.23) twice, (2.26) reduces to 
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By factoring, (2.27) can be written as 
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For ease in plotting, the following variables will be introduced: 

φθ
π
λ

cossin
2

== xku                                            (2.29) 

  φθ
π
λ

sinsin
2

== ykv .                                           (2.30) 

The magnitude of the array factor is plotted in Figure 5.  The sidelobes are 9.54 dB down 

from the main lobe (which is normalized to 0 dB in the figure).   



 
 

 

Figure 5.  Magnitude of the array factor (dB) for 2
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Figure 5.  Magnitude of the array factor (dB) for 2-D array.
 

Beamwidths are more difficult to specify when the array factor is two dimensional

Commonly, beamwidths are specified in certain planes (for instance, elevation and 

azimuthal planes) and given in half-power or null-to-null form, as in the one

case.  The sidelobe level is again the maximum value of the array factor outside 

 (v) is the vector of propagation delays (or phase changes) across 

wavevector, k.  It can be written mathematically as 

21

 
D array. 

Beamwidths are more difficult to specify when the array factor is two dimensional.  

Commonly, beamwidths are specified in certain planes (for instance, elevation and 

null form, as in the one-dimensional 

case.  The sidelobe level is again the maximum value of the array factor outside of the 

the vector of propagation delays (or phase changes) across 

http://www.antenna-theory.com/definitions/steering.php
http://www.antenna-theory.com/definitions/wavevector.php
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Aliasing occurs when signals propagating in distinct directions produce the same steering 

vectors.  In that case, the array’s response towards the two directions will be identical, so 

that the array cannot distinguish the two directions.  This is similar to the signal 

processing version of aliasing, where if the sampling rate is too small in time, then 

distinct frequencies cannot be resolved. 

For uniformly spaced linear arrays, there will exist plane waves from distinct 

directions with identical steering vectors if the spacing between elements, ∆ , is greater 

than 2/λ .  Similarly, for uniformly spaced rectangular (planar) arrays with elements on 

the x-y plane, there will exist distinct directions with identical steering vectors if the 

element spacing in the x- or y-directions is greater than 2/λ .  When aliasing exists, the 

main beam may be replicated elsewhere in the pattern.  These replicated beams are 

referred to as grating lobes. 

For arrays without a uniform structure, the distance between elements can be much 

larger than 2/λ  without introducing aliasing.  In this case, no two distinct angles of 

arrival will produce identical steering vectors.  However, while aliasing technically does 

not occur, there may be steering vectors that are very similar so that grating lobes exist.  

Determining whether or not this occurs for an arbitrary array is very difficult.  In general, 

if a non-uniform array is decided upon, the array factor can be checked to ensure that 

http://www.antenna-theory.com/arrays/weights/gratinglobes.php
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grating lobes do not occur.  Mathematical studies on the uniqueness of steering vectors 

can be found in [40-41]. 



 

III.   WEIGHTING METHODS IN ANTENNA ARRAYS 

3.1.   Introduction 

From (2.17), it is clear that the weights will have a significant impact on the output 

of the antenna array.  Since the array factor is a linear function of the weights, weighting 

methods are well developed and can be selected to meet a wide range of objectives.  

These objectives include pattern steering, nulling energy from specific directions relative 

to an array, minimizing the Mean Squared Error (MSE) between a desired output and the 

actual output, or minimizing the sidelobe level outside a specified beamwidth in linear 

arrays.  These techniques will be discussed in this chapter.  In addition, adaptive signal 

processing methods applied to antenna arrays will be discussed.  Most of the methods 

described here apply to arrays of arbitrary geometry.  However, for simplicity, examples 

will be presented for uniform linear arrays with half-wavelength spacing.  Hence, the 

element positions will be given by )2/  0,  ,0( λnn =d  for 1 , 1, ,0 −= Nn K . 

3.2.   Phased-Tapered Weights 

The linear array of Section 2.4 had maximum response in the direction of °= 90θ .  

The simplest method of altering the direction in which the array is steered is to apply a 

linear phase taper to the weights.  The phase taper is such that it compensates for the 

phase delay associated with the propagation of the signal in the direction of interest.  For 

example, if the array is to be steered in the direction dθ , the weights would be given by 

d
n

jnew θπ cos= .                                                (3.1) 

For these weights, the array factor becomes 

∑
−

=

−=
1

0

)cos(cosN

n

jneAF d θθπ
,                                     (3.2)

http://www.antenna-theory.com/arrays/weights/main.php
http://www.antenna-theory.com/arrays/weights/main.php#phased
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or 

)cos(cos1

)cos(cos1
θθπ

θθπ

−−

−−
=

d

d

je

Nje
AF                                          (3.3) 

The magnitude of the array factor (normalized so that the peak is unity, or 0 dB) is 

plotted in Figure 6 for N=5 and °= 45dθ .  The array factor has a maximum at the desired 

direction, and like the result in Figure 2.5 the sidelobes are 11.9 dB down from the 

mainlobe.  This simple steering method can be used in two- or three-dimensional arrays 

as well as for arbitrary scan angles. 

 
Figure 6.  Array factor of steered linear array. 

 
3.3.   Schelkunoff Polynomial Method 

A weighting scheme for placing nulls in specific directions of an array factor was 

developed by Schelkunoff [22, 42].  In general, an N-element array can null signals 

arriving from N-1 distinct directions.   

http://www.antenna-theory.com/arrays/weights/zeros.php


 
 

 

26

To illustrate the method, the array factor 

∑
−

=

−=
1

0

cosN

n

njewAF n
θπ                                           (3.4) 

can be rewritten as a polynomial as 

∑
−

=
=

1

0
)(
N

n
zwzAF n

n ,                                                (3.5) 

where 

θπ cosjez −= .                                                   (3.6) 

Since a polynomial can be written as the product of its own zeros, it follows that 

∏
−

=
−= −

2

0
)()( 1

N

n
zzwzAF nN ,                                         (3.7) 

where the nz  are the zeros of the array factor.  By selecting the desired zeros and setting 

(3.7) to (3.5), the weights can be found. 

As an example, assume an N=3 element array with zeros to be placed at °45  and 

°120 .  In that case, the following values are calculated  

 °−= 45cos
0

πjez                                                  (3.8) 

and 

°−= 120cos
1

πjez  .                                              (3.9) 

Arbitrarily letting 121 ==− wwN , (3.7) becomes 

1010
2 )()( zzzzzzzAF ++−= .                                    (3.10) 
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Setting (3.10) equal to the original form of the array factor (3.5), the weights are easily 

found to be: 
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The normalized array factor for the specified weights is plotted in Figure 7.  As desired, 

the pattern has nulls at °45  and °120 .   

 
Figure 7.  Array pattern with weights from Schelkunoff method. 

 

3.4.   Dolph-Chebyshev Method 

Often in antenna arrays it is desirable to receive energy from a specific direction 

and reject signals from all other directions.  In this case, for a specified main beamwidth 

the sidelobes should be as low as possible.  For linear, uniformly spaced arrays of 

http://www.antenna-theory.com/arrays/weights/dolph.php
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isotropic sensors steered to broadside ( °= 90dθ ), the Dolph-Chebyshev method will 

return weights that achieve this.  A weighting method for obtaining minimum sidelobes 

in arbitrarily spaced arrays of any dimension, steered to any scan angle and for any 

antenna type is derived in Chapter 6. 

In observing array factors as in Figure 4, note that the sidelobes decrease in 

magnitude away from the mainbeam.  To have the lowest overall sidelobe level, the 

sidelobe with the highest intensity should be decreased at the expense of raising the 

intensity of the lower sidelobes.  The result will be that for the minimum overall sidelobe 

level, the sidelobes will all have the same peak value.  Dolph observed this and employed 

Chebyshev polynomials, which have equal-magnitude peak variations (or ripples) over a 

certain range.  By matching the array factor to a Chebyshev polynomial, the equal-ripple 

(or constant-sidelobe) weights can be obtained.  The actual process is straightforward but 

cumbersome to write out; for details see [22].  Several articles have been written on 

efficient computation of the Dolph-Chebyshev weights [43-44]. 

As an example, a uniformly spaced linear array with half-wavelength spacing and 

N=6 is used.  The Dolph-Chebyshev weights are calculated for a sidelobe level of -30 

dB.  The associated magnitude of the array factor is plotted in Figure 8.  The null-to-null 

beamwidth is approximately °60 .  Note that all the sidelobes are equal in magnitude at -

30 dB. 
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Figure 8.  Dolph-Chebyshev array for N=6 with sidelobes at -30 dB. 

 
3.5.   Minimum Mean-Square Error (MMSE) Weighting 

The weighting methods discussed previously have been deterministic; that is, they 

have not dealt with noise or statistical representations of the desired signals or 

interference.  In this section, a more general beamforming technique is developed that 

takes into account the statistical behavior of the signal environment. 

Assume now the input to the array consists of one desired signal, s(t), with an 

associated wavevector sk .  Assume there exists noise at each antenna, )(tni .  The noise 

at each antenna can be written in vector form as 

http://www.thefouriertransform.com/series/mse.php
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In addition, assume there are G interferers, each having narrowband signals given by 

)(tI a  and wavevectors given by ak , . , 2, ,1 Ga K=   Using the steering vector notation 

for the phase delays as in (2.31), the input to the antenna array can then be written as 

∑
=

++=
G

a
tItstst aa

1
)()()()()()( kvNkvX .                          (3.13) 

The desired output from the antenna array (or spatial filter) is 

)()( tstYd = .                                                     (3.14) 

The actual output is  

)()( ttY HXW= .                                                 (3.15) 

where H is the Hermitian operator (conjugate transpose).  Equation (3.15) differs from 

(2.15) because the mathematics in the derivation will be simpler if the weights used are in 

the form of (3.15).  The error can then be written as 

)()()( tYtYte d−= .                                             (3.16) 

The minimum mean-squared error estimate (MMSE) seeks to minimize the expected 

value of the squared magnitude of e(t).  The mean-squared error (MSE) is 

)]()([MSE teteE ∗= ,                                         (3.17) 

where * indicates complex conjugate and E[] is the expectation operator.  Expanding    

(3.17) with (3.15), the MSE becomes 
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( )( )])()()()([MSE tsttstE HH ∗−−= WXXW .                         (3.18) 

Multiplying the terms above, the MSE becomes 

−+= ∗ )]()([])()([MSE tstsEttE HH WXXW         

])()([)]()([ WXXW ttsEtstE HH −∗ .                      (3.19) 

The first term in (3.19) can be simplified to 

WXXWWXXW )]()([])()([ ttEttE HHHH = ,                         (3.20) 

since the expectation is a linear operator and the weights are fixed.  The autocorrelation 

matrix, XXR , is defined to be 

)]()([ ttE HXXR XX = .                                           (3.21) 

The second term in (3.19) is the signal power, 2
sσ : 

)]()([2 tstsEs
∗=σ .                                              (3.22) 

Defining 

)]()([ tstE ∗= XΛ ,                                              (3.23) 

the third term in (3.19) becomes 

ΛWXW HH tstE =∗ )]()([ .                                        (3.24) 

Finally, the fourth term in (3.19) is just the complex conjugate of the third term: 

WΛWX HH ttsE =])()([ .                                        (3.25) 

Equation (3.19) can then be rewritten as 

WΛΛWWRW XX
HH

s
H −−+= 2MSE σ .                           (3.26) 
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The goal is to find the W that produces the minimum MSE.  The gradient of (3.26) with 

respect to W is 

ΛWR XX 22MSE −=∇ .                                         (3.27) 

Setting (3.27) equal to zero and solving gives the optimal weights, optW : 

ΛRW XX
1−=opt .                                               (3.28) 

Equation (3.28) requires two pieces of information, the autocorrelation matrix and 

the vector Λ .  The inverse of the autocorrelation matrix is often estimated using the 

Sample Matrix Inverse (SMI) method.  The estimate is denoted with the bar overhead, 

1−
XXR , and uses K snapshots of the input vector X to formulate the estimate. 
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k
kk HXXR XX .                                     (3.29) 

Assuming the signal of interest is uncorrelated in time with the noise and 

interference, (3.29) along with (3.13) yields 

)()](
1
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ssaa ts
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a
tItstsE kvkvNkvΛ σ=
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++= ∗∑ .              (3.30) 

Hence, the vector Λ  can be determined if the direction of the signal (given by sk ) and 

the signal power ( 2
sσ ) are known.  Often the incoming direction and power can be 

determined by using a training sequence to calibrate the array.  The optimal weights can 

be rewritten using (3.30) as 

)(12
ssopt kvRW XX

−= σ .                                           (3.31) 
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Equation (3.31) represents the weights that minimize the MSE.  The optimal MSE is 

found from substituting (3.31) into (3.26): 

)()(MSE 142
ss

H
ssopt kvRkv XX

−−= σσ .                               (3.32) 

Similar formulations can be used to formulate weights that maximize the signal to noise 

ratio (SNR) when the autocorrelation matrix of the interference and noise can be 

estimated [45]. 

As an example, consider the case of the desired signal arriving from °=110dθ  with 

a signal power of 2
sσ =1.  Two interferers, arriving from °= 401θ  and °= 902θ , each 

have 102 =Iσ .  The array will have N=3 elements.  Two cases will be considered, the 

first with noise power 01.02 =nσ  (SNR=20 dB), and the second with 12 =nσ  (SNR=0 

dB).  The optimal weights can then be calculated using (3.31). 

The resulting array factor magnitudes are plotted in Figure 9.  Observe that for the 

high SNR case, the pattern places nulls exactly in the directions of the interferers.  For the 

low SNR case, the pattern puts less emphasis on nulling out the interferers.  This is 

because the gain in combating independent noise sources is best obtained by combining 

the received signals with equal gain [45].  Note that neither array factor is maximum 

towards the signal of interest, °=110dθ . 
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Figure 9.  Array factor magnitudes for MMSE weights. 

 
3.6.   The LMS Algorithm 

The weights discussed up until now have not been adaptable; that is, they do not 

attempt to change as the signal environment changes.  A weight updating strategy that 

changes with its environment is known as an adaptive algorithm and adaptive signal 

processing has become a field in itself.  In this section, the first and arguably most widely 

used adaptive algorithm is discussed, the Least Mean Square (LMS) algorithm.  This 

algorithm was invented by Bernard Widrow along with M. E. Hoff, Jr. and published in a 

primitive form in 1960 [46].  The Applebaum algorithm [47] was developed 

independently in 1966 and largely uses the same ideas. 

The algorithm assumes some a priori knowledge; in this version (the spatial LMS 

algorithm), the known information is assumed to be the desired signal power ( 2
sσ ) and 
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the signal direction, sk .  The algorithm iteratively steps towards the MMSE weights.  If 

the environment changes, then the algorithm will step towards the new MMSE weights.  

Samples of the input vector, X, will be ordered and written as X(k).   

To accomplish the iterative minimization of the MSE, recall that the gradient of the 

MSE as a function of the weights (W) is given by (3.26).  The LMS algorithm 

approximates the autocorrelation matrix at each time step by 

)()()( kkk HXXR XX = .                                           (3.33) 

Then the gradient of the MSE can be approximated at each time step as 

)(2)()()(2)(MSE 2
ss

H kkkk kvWXX σ−=∇ .                          (3.34) 

To minimize the MSE, the LMS algorithm simply increments the weights in the direction 

of decreasing the MSE.  The update algorithm for the weights can then be written as 

)(MSE
2

)()1( kkk ∇−=+
λ

WW ,                                   (3.35) 

where λ  is a positive scalar that controls how large the steps are for the weights.  

Substituting (3.34) into (3.35) produces the LMS algorithm: 

{ })()()()()()1( 2 kkkkk H
SS WXXkvWW −+=+ σλ .                 (3.36) 

Equation (3.36) actually represents one of the many forms of the LMS algorithm.  The 

versions primarily differ in the a priori knowledge required. 

The algorithm’s simplicity is its primary reason for its widespread use.  In addition, 

it has fairly decent convergence properties and has been extensively studied.  In order to 

have stable results (the expected MSE will converge to a constant value), the parameter 

λ  should be chosen according to 
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)(
2

0
XXRMAXλ

λ << ,                                         (3.37) 

where )(max XXRλ  is the largest eigenvalue of the autocorrelation matrix [48].  The speed 

of the convergence is governed by the condition number (ratio of largest to smallest 

eigenvalues) of the autocorrelation matrix [49].   

As an example of the LMS algorithm, the interference and noise scenario of Section 

3.3 is again considered, this time with a SNR=20 dB.  The noise will be additive white 

Gaussian noise (AWGN) that is independent at each antenna.  The array will be the linear 

array of N=5 elements with half-wavelength spacing.  The algorithm is initiated with a 

weight of unity applied to all elements: 
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)1( MW .                                                     (3.38) 

The parameter λ  is chosen to be 

)(
1.0

015.0
max XXRλ

λ == .                                       (3.39) 

An example run is conducted, and the resulting MSE is plotted at each iteration [from 

(3.26)], along with the optimal MSE [from (3.31)] in Figure 10.  The LMS algorithm is 

fairly efficient in moving towards the optimal weights for this case.  Since the algorithm 

uses a guess of the autocorrelation matrix at each time step, some of the steps actually 

increase the MSE.  However, on average, the MSE decreases.  This algorithm is also 

fairly robust to changing environments.   
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Figure 10.  MSE at each iteration, along with the optimal MSE. 

Several adaptive algorithms have expanded upon ideas used in the original LMS 

algorithm.  Most of these algorithms seek to produce improved convergence properties at 

the expense of increased computational complexity.  For instance, the recursive least-

square (RLS) algorithm seeks to minimize the MSE just as in the LMS algorithm [48].  

However, it uses a more sophisticated update to find the optimal weights that is based on 

the matrix inversion lemma  [45].  Both of these algorithms (and all others based on the 

LMS algorithm) have the same optimal weights the algorithms attempt to converge to, 

given by (3.31). 



 

IV.   METHODS OF ANTENNA ARRAY GEOMETRY OPTIMIZATION 

4.1.   Introduction 

The field of electromagnetics was unified into a coherent theory and set of four 

fundamental equations by James Clerk Maxwell in 1879 [50].  These equations are 

known as Maxwell’s equations.  The first is Gauss’s law: 

Vρ=⋅∇ D ,                                                       (4.1) 

where D is the electric flux density and Vρ  is the volume charge density.  The second 

equation states that “magnetic monopoles do not exist”, and can be written in 

mathematical form: 

0=⋅∇ B ,                                                         (4.2) 

where B is the magnetic flux density.  The third equation is known as Ampere’s law: 

 J
D

H =
∂
∂

−×∇
t

  ,                                                 (4.3) 

where H is the magnetic field and J is the impressed electric current density.  The fourth 

is Faraday’s law: 

 0  =
∂
∂

+×∇
t
B

E ,                                                   (4.4) 

where E is the electric field.   

While there are only four equations in the set, they are complicated enough that 

they can only be solved in closed form for some basic canonical shapes.  As a result, 

numerical methods for solving electromagnetic problems became necessary.  A thorough 

introduction and survey of the methods can be found in [51].   

Among the most popular of the numerical methods include the finite-difference 

time domain (FDTD) method developed in 1966 by Yee at Lawrence Livermore National 

http://www.antenna-theory.com/definitions/maxwellsequations.php
http://www.antenna-theory.com/definitions/electricfluxdensity.php
http://www.antenna-theory.com/definitions/magneticfluxdensity.php
http://www.antenna-theory.com/definitions/hfield.php
http://www.antenna-theory.com/definitions/efield.php
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Laboratories [52].  This method discretizes space and time and computes the electric and 

magnetic fields using discretized forms of Ampere’s law and Faraday’s law.  The 

algorithm initially computes the electric fields (assuming the magnetic fields are known) 

using Ampere’s law.  A small time step later, the algorithm computes the magnetic fields 

at that time using Faraday’s law (along with the calculated electric field).  This process is 

repeated as long as desired and has been widely successful in modeling numerous 

electromagnetic problems.  Another popular method is the Integral Equation (IE) Method 

of Moments (MoM), which numerically solves complex integral equations by assuming a 

solution in the form of a sum of weighted basis functions along the structure being 

analyzed.  The weights are then found by introducing boundary conditions and solving an 

associated matrix for the weights, thereby leading to the solution [53].   

Because of the difficulty in obtaining solutions to electromagnetic problems, 

optimization is not simple.  Antenna arrays, being a specific class of electromagnetic 

problems, are no exception.  However, significant developments over the past 50 years in 

the field of mathematical optimization are now being applied to electromagnetic 

problems.  The tremendous increase in computing power over the last few decades has 

enabled complex problems to be solved and led to large advances in the fields of 

numerical electromagnetics and in optimization.  This chapter describes the optimization 

methods that have penetrated the electromagnetic field in the late 20th century. 

The first set of methods, linear programming and convex optimization problems, 

are part of a class of optimization methods that are deterministic.  The problems have a 
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unique solution that can be verified to be globally optimal.  However, due to the complex 

nature of the problems, the solutions are obtained numerically and not analytically.   

The second set of methods discussed in this chapter, Simulated Annealing (SA) and 

Particle Swarm Optimization (PSO), are part of a class of optimization methods that are 

stochastic in nature.  These methods produce solutions to the most general optimization 

problems that have very little structure and cannot be solved via other methods.  The 

resulting solutions from these methods are unfortunately not verifiable to be globally 

optimal.  However, they have recently been receiving a lot of attention in the antenna 

field because they can be applied to a wide range of problems and can be used to obtain 

solutions that achieve a desired performance metric.  In March 2007, the IEEE 

Transactions on Antennas and Propagation dedicated the entire issue to optimization 

techniques in electromagnetics and antenna system design.  An overview of the methods 

and their applications to electromagnetics can be found in [54].  Many of these papers 

used techniques that were stochastic in nature, including the popular genetic algorithm 

(GA)[55].   

These optimization techniques are often coupled with the numerical methods 

discussed previously.  For instance, the PSO algorithm was used in conjunction with the 

FDTD method in [56].  The genetic algorithm was used along with the method of 

moments for the design of integrated antennas in [57].   

4.2.   Linear Programming 

The most general form of a mathematical optimization problem can be expressed as 

 
χ∈x

x

   subject to

)(     minimize f
.                                                   (4.5) 
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Here f(x) is the objective function to be minimized, and χ  is known as the feasible set, or 

set of all possible solutions.  In the following, ‘subject to’ will be abbreviated as ‘s. t.’.  

The solution ( optx ) to (4.5) will have the property 

χ∈∀≤ xxx    )()( ff opt ,                                           (4.6) 

where∀ is commonly used in mathematics to state ‘for all’.  The solution is not 

necessarily unique but exists as long as χ  is not the empty set. 

A linear program (LP) is a widely studied optimization problem that has numerous 

practical applications, one of which is shown at the end of this section.  The theory on 

this subject was developed by George Dantzig and John von Neumann in 1947 [58].  The 

variables in a linear program are written as an N-dimensional vector of real numbers: 
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The objective function to be minimized is a linear function of the problem variables: 

xcx Tf =)( ,                                                       (4.8) 

where c is an N-dimensional (real) vector. 

The feasible set χ  in a linear program is a set of M affine inequalities.  Each 

inequality can be written in the form: 

i
T
i b≤xa ,                                                        (4.9) 

where ia  is an N-dimensional real vector, ib  is a real number, and . , 2, ,1 Mi K=   

Without any constraints, the vector x can be any vector in Nℜ .  Each constraint in the 
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form of (4.9) divides the space Nℜ  into two half-spaces.  In two dimensions (N=2), the 

divider is a straight line; in three dimensions (N=3) the divider is a plane and so on.  The 

resulting feasible region χ  is the intersection of all of these half-spaces.  The set of 

constraints 
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M      
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                                                     (4.10) 

are often abbreviated as 

bAx ≤ .                                                       (4.11) 

In (4.11), A is an NM ×  matrix given by 
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and b is an M-dimensional vector given by 
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The inequality sign in (4.11) is understood to be component-wise (must be satisfied for 

all inequalities).  The standard form of an LP can then be written as in (4.14). 
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An equality constraint can be viewed as two inequality constraints, so LPs are often 

written in the form given in (4.15), where C is a matrix and f is a vector.  If no vector x 

satisfies all the constraints, the problem is said to be infeasible. 

fCx

bAx

xc

=

≤

        

   . .

  min

ts

T

                                                   (4.15) 

Extensive work has gone into understanding the problem presented in (4.15).  

Solutions found to (4.15) must satisfy a set of optimality conditions, and they can 

therefore be verified to be globally optimal [59].  In addition, several numerical methods, 

such as the simplex algorithm [60] and the rapid interior point method [61], have been 

developed to efficiently solve the LP.  As a result, if an optimization problem can be put 

into the form of an LP, an optimal vector (if one exists) can be found efficiently and 

verified to be globally optimal.  Commonly used computational software programs, 

including Mathematica and Matlab, now have built in routines for solving linear 

programs. 

To illustrate the utility of linear programs, a method of determining sidelobe 

minimizing weights for symmetric linear arrays with real weights steered to broadside 

will be presented.  This follows the discussion in [27].  The results will be extended in 

Chapter 6 to work for arbitrarily spaced arrays with complex weights steered to any 

angle, with arbitrary antenna elements and an arbitrary beammwidth.  

A symmetric linear array is an array with elements spaced symmetrically about the 

origin, as shown in Figure 11.   
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Figure 11.  Symmetric linear array. 

An array of this type with real weights and 2N elements will have an array factor given 

by 

∑
=

=
N

n
dwAF nn

1
)cos2cos()( θπθ .                                   (4.16) 

where nd  is the position of the thn  element along the z-axis.  The objective is to 

determine the weights that produce the lowest possible sidelobe level.  The sidelobe level 

will be defined as the maximum value of the magnitude of the array factor outside of a 

specified beamwidth.  The set of all angles in which the array factor is to be suppressed 

will be written as Θ .  The sidelobe level (SLL) can be written mathematically as 

|)(|max θ
θ

AFSLL
Θ∈

= .                                           (4.17) 
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Since the array factor is to be maximum at broadside, the following constraint is 

imposed: 

1)90( =°AF .                                                  (4.18) 

The problem of minimizing the sidelobe level can then be written as an optimization 

problem: 

1)90(   . .

   min

=°AFts

SLL
.                                              (4.19) 

This problem can be written as an LP in standard form.  First, let t represent the 

maximum sidelobe level.  Sample the region Θ  into R sample points ( R21 , , , θθθ K ).  

The sidelobes will be suppressed at the sample points; following the optimization 

procedure, it can be verified that the sidelobes are also suppressed between the samples.  

Equation (4.19) can be rewritten into the form given in (4.20). 
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                                   (4.20) 

Each one of the constraints in (4.20) can be written as an affine constraint as in (4.10).  

To see this, define the problem variables to be 
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The objective function in (4.20) can be rewritten as 

[ ] XcX Tt == 0   0  0  1 L .                                       (4.22) 
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The equality constraint in (4.20) can be rewritten using (4.16) along with the vector X as 

[ ] 1

  

 

 1    1  1  0 2

1

=























Nw

w

w

t

M

L ,                                             (4.23) 

or 

10 =XaT .                                                      (4.24) 

Finally, the inequality constraints in (4.19) can be rewritten as 

tAFt i ≤≤− )(θ ,                                                 (4.25) 

for Ri  , 2, ,1 K= .  Using (4.16), the inequality on the right becomes 
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or 

0≤XaTi .                                                       (4.27) 

Similarly, the inequality on the left in (4.25) becomes 
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 0≤Xf Ti .                                                     (4.29) 

Using (4.22), (4.24), (4.27) and (4.29), the optimization problem of (4.20) can be 

rewritten as in (4.30). 
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                                   (4.30)  

Equation (4.30) is in the same form as the standard LP in (4.15).  Hence, solutions can be 

rapidly found to this problem using numerical computational software and guaranteed to 

be globally optimal. 

As an example, consider the following 6-element symmetric linear array with 

positions 

]0.85    0.5    2.0[ λλλ ±±±=Td .                                  (4.31) 

Finding weights that minimize the sidelobe level while directing the maximum to 

broadside cannot be found via the Dolph-Chebyshev method, because the array does not 

have uniform spacing.  The beamwidth will be °40 ; hence, the region of sidelobe 

suppression will be 

{ } }180110{ 700 °≤≤°∪°≤≤°=Θ θθ .                            (4.32) 

Using the linear programming method described in this section, the optimal weights can 

be found to be 
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where 1w  is the weight associated with the first pair of positions in (4.31), while 2w  and 

3w  are associated with the second and third pairs of positions, respectively.  The resulting 

array factor is plotted in Figure 12.  The dashed vertical lines in Figure 12 define the 

boundary of the main beam and specify the region in which the sidelobes are suppressed.  

The maximum sidelobe level outside the main beam is -11.21 dB.  Note that the sidelobes 

are equal in magnitude, which is expected for sidelobe-minimizing weights. 

 
Figure 12.  Array factor for optimal weights found via linear programming. 

 
4.3.   Convex Optimization 

Convex optimization problems are a subclass of the general optimization problem 

given by (4.5).  They have recently received a lot of attention in the engineering 

community because of their wide applicability.  These applications include robotics [62], 



 
 

 

signal processing [63], image processing [64] and information theory [65].  An excellent 

text for the engineering community on convex optimization has been written [66].

A convex optimization problem is defined by two fundamental characte

feasible set χ  must be convex and the objective function 

convex set is defined such that for every 

straight line between 1x  and 

can be written as 

where α  is a scalar between 0 and 1; for all 

Examples of convex sets are shown in Figure 13.  Convex sets are convenient to 

with because search algorithms can always move between the current feasible point and 

the optimal point without running into the boundary of the set.  Examples of non

sets are shown in Figure 14; each set contains points 

between them, as in (4.34), are in the set.

 

 

signal processing [63], image processing [64] and information theory [65].  An excellent 

text for the engineering community on convex optimization has been written [66].

A convex optimization problem is defined by two fundamental characte

must be convex and the objective function f(X) is a convex function.  A 

convex set is defined such that for every 1x  and 2x  in the set χ , then all points along a 

and 2x  are in χ .  Mathematically, any point between 

21 )1( xxz αα −+= ,                                             

is a scalar between 0 and 1; for all α  in this range z must be in the set.  

Examples of convex sets are shown in Figure 13.  Convex sets are convenient to 

with because search algorithms can always move between the current feasible point and 

the optimal point without running into the boundary of the set.  Examples of non

sets are shown in Figure 14; each set contains points 1x  and 2x  such that not all points 

between them, as in (4.34), are in the set. 

Figure 13.  Examples of convex sets. 
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signal processing [63], image processing [64] and information theory [65].  An excellent 

text for the engineering community on convex optimization has been written [66]. 

A convex optimization problem is defined by two fundamental characteristics: the 

) is a convex function.  A 
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                                            (4.34) 

must be in the set.  

Examples of convex sets are shown in Figure 13.  Convex sets are convenient to work 

with because search algorithms can always move between the current feasible point and 

the optimal point without running into the boundary of the set.  Examples of non-convex 

such that not all points z 

 



 
 

 

Figure 14.  Examples of non
 

A function is said to be convex on a set 

satisfies the following inequality:

This means that the curve of the function 

connecting the two points 

function f(t) shown in Figure 15.  The secant line between two points 

drawn; note that f(t) lies below this line every

Figure 14.  Examples of non-convex sets. 

A function is said to be convex on a set χ  if for any two points X and 

satisfies the following inequality: 

)()1()())1(( YXYX fff αααα −+≤−+ .                          (4.35)

This means that the curve of the function f will always lie below a straight line 

connecting the two points f(X) and f(Y).  This is illustrated for a one-dimensional 

shown in Figure 15.  The secant line between two points x and 

lies below this line everywhere between x and y. 
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and Y in χ , it 

.                          (4.35) 

will always lie below a straight line 

dimensional 

and y is also 



 
 

 

Figure 15.  Illustration of a convex function.

A function is said to be strictly convex if the inequality (

with a strict inequality (<).  For convex functions, local minimums are alwa

minimums.  For a strictly convex function, the global minimum is unique.  This property 

makes convex functions convenient to work with in optimization.  

As an example of proving a function is convex, consider 

by ( , ),(  ),( 21 XX Mfff K

set: 

The goal is to show that F

Figure 15.  Illustration of a convex function. 
 

A function is said to be strictly convex if the inequality (≤ ) in (4.35) is replaced 

with a strict inequality (<).  For convex functions, local minimums are alwa

minimums.  For a strictly convex function, the global minimum is unique.  This property 

makes convex functions convenient to work with in optimization.   

As an example of proving a function is convex, consider M convex functions given 

)(X .  Define the function F to be the pointwise maximum of the 

)(max)( XX ii
fF = .                                              (4.36)

F is also convex.  To accomplish this, rewrite (4.36) as

))1((max))1(( YXYX αααα −+=−+ ii
fF .                     (4.37)
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) in (4.35) is replaced 

with a strict inequality (<).  For convex functions, local minimums are always global 

minimums.  For a strictly convex function, the global minimum is unique.  This property 

convex functions given 

to be the pointwise maximum of the 

.                                              (4.36) 

is also convex.  To accomplish this, rewrite (4.36) as 

.                     (4.37) 
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Using the convexity of each function if , it follows that 

[ ])()1()(max))1((max YXYX iiiii
fff αααα −+≤−+ .                 (4.38) 

Since maximizing a sum of functions over one index must be less than maximizing each 

function individually, 

[ ] )()1(max)(max)()1()(max YXYX jjiiiii
ffff αααα −+≤−+ .             (4.39) 

Equations (4.37)-(4.39) show that 

)(max)1()(max))1(( YXYX jjii
ffF αααα −+≤−+ ,                  (4.40) 

which proves that F is convex.  Hence, the pointwise maximum of convex functions is 

convex; this property will be used in Chapter 6. 

Convex optimization problems are rapidly solvable with computers; the interior 

point methods developed for linear programs have been efficiently extended to convex 

problems [67].  Since these problems have a very general structure, they can be applied to 

a wide range of practical problems.  In addition, since the optimal points found can be 

mathematically proven to be globally optimal, putting a problem into convex form is very 

desirable.  Free convex optimization packages have been written for use with Matlab; 

examples packages include CVX and YALMIP and are available online.  A convex 

optimization problem will be derived and solved in Chapter 6 which greatly extends the 

minimum sidelobe weighting vector of Section 4.2. 

4.4.   Simulated Annealing 

The discussion now turns to stochastic optimization algorithms.  These algorithms 

work on the most general type of optimization problems; however, they tend to use 
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random searches and the results are not guaranteed to be globally optimal.  However, 

they have recently been employed extensively in the engineering community. 

The simulated annealing (SA) algorithm attempts to mimic the physical process of 

annealing of solids.  This process involves heating a solid material up to a high 

temperature and then allowing it to cool at a very slow rate.  The result is that the 

particles in the solid arrange themselves in the lowest energy state configuration, usually 

an ordered lattice of some sort [68].  The SA algorithm attempts to optimize via the same 

procedure.  The algorithm was originally introduced in 1983 by Kirkpatrick in the journal 

Science as a generalization of the Monte Carlo method for examining the equations of 

state of n-body systems [69]. 

The SA algorithm requires a cost function f [also known as the objective function in 

(4.5)], an initial feasible point ( 1x ), and a perturbation mechanism for obtaining new 

points around the current point.  The algorithm evaluates the cost function at the start 

point, perturbs the point to a new point, evaluates the cost function at this point and 

repeats.  The following discussion describes finding a minimum.   

From the current point ix , a candidate new point ( 1+ix) ) in the feasible set is chosen 

using the perturbation mechanism.  If the new point decreases the cost function, then 

0)()( 1 <−=∆ + iii fff xx)                                          (4.41) 

and the current solution is updated according to 

 11 ++ = ii xx ) .                                                       (4.42) 

The algorithm does not want to only accept points that decrease the cost function; this 

would cause the algorithm to find a local minimum about the initial point.  If the next 
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candidate point increases the objective function, then the probability that the algorithm 

updates the current solution to the candidate solution is given by       








 ∆−
== ++ T

f
P i

ii exp}  { 11 xx ) ,                                       (4.43) 

where T  represents the current “temperature” of the system.  If T is very large, then 

almost all transitions occur and the result is a random walk through the space of points 

independent of the cost function.  When T  becomes small, only transitions that increase 

the value of the cost function occur; the result is that the algorithm converges to the local 

minimum of the neighborhood of points that the current point resides in.  If the algorithm 

does not accept the next candidate point, then it simply remains at the previous point, 

ii xx =+1 .                                                        (4.44) 

The simulated annealing algorithm starts the optimization procedure at a high 

temperature (sufficiently high such that most transitions occur), and lowers the 

temperature slowly enough so that a satisfactory solution is found.  There are many 

methods of choosing this ‘cooling schedule’; a collection of these is described in [70] and 

a specific method is utilized in Chapter 5.  The algorithm is stopped once transitions to 

new candidate points do not occur over a large number of attempts; the algorithm is then 

said to have converged. 

The SA algorithm, while being relatively simple to implement, requires a good deal 

of care in choosing the initial temperature and an appropriate cooling schedule so that a 

globally optimum point is likely to be found.  Increased confidence that the proposed 

solutions are globally optimum can be obtained by running the algorithm multiple times 

from various initial points. 
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4.5.   Particle Swarm Optimization (PSO) 

The PSO algorithm is a stochastic, evolutionary algorithm capable of effectively 

optimizing difficult multidimensional optimization problems.  Examples of the successful 

application of the PSO algorithm in the electromagnetics community include antenna 

design [71] and array geometry selection [72].  Originally introduced by Kennedy and 

Eberhart in 1995 [73], the PSO algorithm has been gaining popularity over the genetic 

algorithm and other evolutionary algorithms because of its simplicity in implementation 

and efficient optimization.  In addition, the algorithm lends itself well to parallel 

processing, which is an added bonus.   

The PSO algorithm attempts to mimic the behavior of birds or bees in obtaining a 

food source.  Initially, a flock of birds may start out in random directions searching for 

food.  As each individual bird travels on its path, it may find food in various locations.  

The bird remembers its own ‘personal best’ location of where it had found food.  In 

addition, the bird may periodically fly up and survey the progress of the other birds in the 

flock.  In this manner, each individual bird will be aware of the ‘global best’ position, or 

location found with the most food by any bird in the flock.  Using this general procedure, 

a flock of birds will descend on the region in the area that has a relatively high amount of 

food available.   

The PSO algorithm translates this behavior into a mathematical algorithm for 

optimization.  The PSO algorithm consists of a set of particles (the ‘swarm’), which are 

analogous to the birds.  The algorithm also has a cost or fitness function, which evaluates 
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the current position of each bird; this is analogous to a bird evaluating how much food is 

in a certain location.   

It will be assumed in the following discussion that there is a feasible set χ  to be 

optimized over in which each element can be represented as an N-dimensional real 

vector, and a fitness function ℜ→χ:f  which can evaluate each position to a real 

number. 

The algorithm starts with M particles selected at random positions within the 

feasible set.  The number M depends on the dimension and difficulty of the problem, and 

is one of the parameters left to the algorithm implementer.  The algorithm is iterative and 

the locations will change at each time step.  The thi  particle at time t will be at the 

location given by t
ix , where i is an integer between 1 and M, and t is an integer 

specifying the current time step.  Each particle will also have a randomly selected initial 

velocity vector.  The thi  particle at time t will have a velocity written as t
iv .   

In addition, each particle will record the location of its ‘personal best position’.  

This is the location that the current particle has found to be the fittest (minimum) so far 

along its trajectory.  The personal best positions will be written for the thi  particle as ip , 

and the corresponding fitness value for each of these positions will be written as iP .  

Each particle will also be aware of the ‘global best position’, which is the position that 

has been found to be the fittest so far from among all the particles and will be written as 

the vector g.  The global best value will also be recorded, and it will be written as 

ii
PG min= .                                                    (4.45) 
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Once the random initial positions and velocities have been chosen for each particle, 

the fitness value for each of the positions is evaluated, giving the personal and global best 

positions and values.  The algorithm then updates the velocity and position of each 

particle at every time step until the simulation is stopped. 

To perform the updates, first define matrices t
i1U  and t

i2U  according to  
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where a is equal to 1 or 2, and each t
aiu  is an independent uniformly distributed real 

variable on [0,1].  The velocity is then updated at each time step according to 

)()( 1
2211

1 −−− −+−+= t
i

t
i

t
ii

t
i

t
iV

t
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where Vw  is a real number called the ‘inertial weight’, 1c  is a real number that 

accelerates the particle towards its personal best position, and 2c  is a real number that 

accelerates the particle towards its global best position.  In this manner, each particle 

moves in a random fashion around the solution space, but is stochastically drawn towards 

the particle’s previous best location and the swarm’s global best location.  The inertial 

weight w is a real number in the range [0,1] that controls how much the updated velocity 

depends on the previous velocity.  Studies on PSO have shown that 2.0 is a good choice 

for both parameters 1c  and 2c  [74].   

The position is then updated according to 

11 −− += t
i

t
i

t
i vxx ,                                                  (4.48)  
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and the fitness function is evaluated at each of the new locations.  Finally, the personal 

best and global best positions and values are updated if possible, and then the process 

repeats again.   

This algorithm is relatively simple to implement but performs well on general 

optimization problems in comparison to other evolutionary algorithms.  The biggest 

drawback to the method is that the resulting solutions cannot be verified to be globally 

optimal. 

 



 

V.   ARRAY GEOMETRY OPTIMIZATION FOR INTERFERENCE SUPPRESSION 

5.1.   Introduction 

In this chapter, the influence of array geometry on the performance of adaptive 

antenna arrays is examined by solving a specific wireless communication problem.  The 

problem of interference is addressed, which can occur intentionally (as in jamming) or 

unintentionally (as in wireless devices sharing a frequency band). 

The steady-state weights many adaptive algorithms (for instance, LMS and RLS) 

converge to are the MMSE weights in (3.31).  The optimal MSE is rewritten from (3.32): 

)()(MSE 142
ss

H
ssopt kvRkv XX

−−= σσ ,                                  (5.1) 

which is a fair measure of the performance of an adaptive array.  In (5.1) the weights are 

absent because the optimal weights have already been substituted into the expression.  

The signal power, 2
Sσ , and the signal direction, given by sk , are part of the wireless 

environment and cannot be changed.  The terms that remain in (5.1) are the steering 

vector v( sk ) and the autocorrelation matrix XXR .  The steering vector can be rewritten 

from (2.31) as 
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which is a nonlinear function of the array element positions.  The autocorrelation matrix, 

defined in (3.21), is a function of the inputs (X) to the antenna array.  The input is a 

summation of noise, the desired signal and the interference from various directions.  The 

input to the array then depends on the positions of the array, the noise power, the signal 
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power and the powers of the interferers.  Since an antenna array cannot control the power 

incident upon it, the autocorrelation matrix can only be altered by changing the array 

geometry, D.  Hence, the MSE in (5.1) is actually only a complicated function of the 

geometry of the array.  Naturally, the question of determining an optimum geometry for 

an adaptive array arises, which is the subject of this chapter. 

5.2.   Interference Environment 

Military communication systems will potentially be used in environments with a 

large amount of co-channel interference from sources intending to impede 

communication.  In this situation, an antenna array is suitable for blocking interference 

spatially separated from the desired signal direction.   

The arrays are not operating in a unique situation in which the interference is from 

known directions.  As a result, it would not be prudent to optimize the array geometry for 

a specific interference situation (example: 3 interferers from 3 distinct angles).  Instead, 

the concept of an interference environment will be introduced as a statistical 

characterization of the expected directions and relative power of the interference.  For 

example, a cell phone tower would expect the interference to be confined to a fixed range 

of elevation angles (directed towards the ground) and would not be concerned with 

blocking interference from the sky.  Other arrays used in more dynamic environments 

may expect interference from all directions with equal probability.  By optimizing an 

array geometry with respect to an interference environment, it is possible to minimize the 

expected (or average) interference power that is not rejected by the array.  A specific 
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example of an interference environment will be detailed in Section 5.4.  The task is now 

to derive an optimization problem whose solution yields an optimal array geometry. 

Recall the definition of the autocorrelation matrix: 

)]()([ ttE HXXR XX = ,                                              (5.3) 

where the expectation is over time.  Each unique interference situation in which the array 

operates will have a unique autocorrelation matrix.  Going one step further, the expected 

autocorrelation matrix, XS , is now defined as  

][ XXX RS IE= ,                                                   (5.4) 

where the expectation operator is now over the interference situations (which defines the 

interference environment).  A noteworthy observation is that if all the antenna elements 

have the same physical orientation, then XS  can alternatively be found by treating the 

elements as isotropic sensors while simply adjusting the power levels in the interference 

environment.  As a simple example, suppose an array was operating in an environment in 

which interference occurred from one of two distinct angles of arrival with equal 

probability.  Each situation would have an autocorrelation matrix associated with it, 

which is written as 1XXR  and 2XXR .  Then the expected autocorrelation matrix is 

)(5.0 21 XXXXX RRS += .                                            (5.5) 

5.3.   Optimization for Interference Suppression 

If it is assumed that the interference has a larger power than the signal of interest or 

that there are many interferers, then the array’s primary goal is to minimize the output 

power while restricting one of the weights in the array to be unity.  This is similar to a 

sidelobe cancellation system [47] and is also the method used in a 7-element adaptive 
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array developed by Raytheon for combating interference in GPS systems [75].  By using 

the power minimization technique, the array can greatly reduce the amount of 

interference power that makes it into the next stage of processing (usually a temporal 

filter).  Note that power minimization does not attempt to place the maximum of the array 

factor towards the signal of interest.  This is a suboptimal technique in regards to the 

MSE; however, when the interference power is much stronger than the power of the 

desired signal, this technique produces weights close to those produced using the MMSE 

weights.  The advantage of this technique is its simplicity, as it does not require 

estimating the direction of arrival of the signal of interest or its power.  

The output power from the array at any time is 

wXXw HHyy =∗ .                                                  (5.6) 

For a fixed interference situation, the average output power P  is then 

wP H
XXRw= .                                                    (5.7) 

A measure of the average output power for a given interference environment P is then 

wSw XX
HP = .                                                     (5.8) 

One of the weights is restricted to be unity so that the power minimization algorithm does 

not set all of the weights to zero.  In addition, for practical reasons such as minimizing 

the effects of mutual coupling, it will be required that the separation between elements be 

at least 4/λ .  Let ijr  be the separation between elements i and j.  The problem of finding 

an optimal array for interference suppression can be written as in optimization problem, 
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given in (5.9).  Note that 0]   0  0  1[1 L=Te .  The minimization variables are the complex 

weights and the values of ijr . 

ji

ts

ij

H

H

≠≥

=

for    ,4/           

1      . .

    min

1

λr

ew

wSw X

                                         (5.9) 

Assuming the locations of the antenna elements are known (or held fixed), the 

optimal weight vector for this problem can be found by using Lagrange multipliers.  The 

Lagrangian can be expressed as 

)1(),( −Λ+=Λ 1X ewwSww HHL .                                  (5.10) 

Taking the gradient with respect to w of the Lagrangian and setting the result to zero, 

(5.10) becomes 

02 1 =Λ+=∇ ewSX optL ,                                        (5.11) 

where optw  are the power-minimizing weights.  Assuming that XS  is invertible, the 

weights can be solved from (5.11) as 

2
1

1eS
w X

−Λ−
=opt .                                                (5.12) 

The parameter Λ can be determined by invoking the equality constraint of (5.9) 

1
2 111 =
Λ

−= − eSeew 1
X

TH
opt ,                                           (5.13) 

and the property 11)( −∗− = XX SS  was used, which follows from the definition of an 

autocorrelation matrix.  The solution to (5.13) can be substituted into (5.12) yielding the 

power-minimizing weights, 
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1
1

1

1
1

eSe
eS

w
X

X
−

−

= Topt .                                                 (5.14) 

Substituting (5.14) into the objective function of (5.9), the minimum value of the 

objective function for a fixed geometry becomes 

11

1
}{min

eSe
wSw

w
1

X
X −

=
T

H .                                          (5.15) 

The goal is now to minimize (5.15) over all array geometries that meet the 

constraints in (5.9).  Minimization of (5.15) is equivalent to maximizing the reciprocal; 

this is true whenever a function is strictly nonnegative.  Equation (5.15) is always 

nonnegative because an autocorrelation matrix is always positive semi-definite [76], 

positive semi-definite matrices always have nonnegative quadratic forms [77], and if a 

matrix is positive semi-definite then its inverse will be as well [77].   Hence, the 

minimization problem in (5.10) can be rewritten as a maximization problem as in (5.16).  

The notation mn][Z  will be used to represent the element of the matrix Z from the thm  

row and thn  column, so that the optimization problem can be written as 

jits ij

T

≠≥

= −−

for    ,4/      . .

][    max 11
1

1
1

1

λr

SeSe XX .                                       (5.16) 

The objective function in (5.16) is only a function of the antenna locations and the 

interference environment.  Since the interference environment cannot be controlled, the 

performance of the array using the optimal weights of (5.14) is only a function of the 

antenna locations.  The optimal element locations are those that maximize the objective 

function of (5.16) subject to the specified constraints.  The solution to (5.16) will not be 

unique, because XS  is invariant to translation (shifting the elements uniformly).  The 
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optimization problem in (5.16) is what needs to be solved in order to determine an 

optimum array geometry for a given interference environment. 

5.4.   Planar Array with Uniform Interference at Constant Elevation 

As an example of the solution to (5.16), a planar array of N elements with the same 

physical orientation is considered.  This example assumes M interferers and takes the 

interference to be mutually independent and arriving from a uniform distribution in the 

azimuth direction ( ]2,0[ πφ ∈  measured counterclockwise from the x-axis), but from a 

fixed elevation angle ( ],0[ πθ ∈  measured down from the z-axis towards the plane of the 

array).  The elements will be located at positions in the x-y plane given by 

Niyx iii  , 2, ,1   ),0,,( K==r .                                       (5.17) 

With M interferers, the input to the array becomes 

∑
=

=
M

n
tsft nnn

1
)()(),()( kvX φθ ,                                      (5.18) 

where ),( φθf  is the element pattern for each antenna,  while )(tsn  and )( nn kv  are the 

signal and the steering vector for the thn  interferer, respectively.  For simplicity, it will be 

assumed that the antenna elements do not have a pattern that varies much in the azimuth 

direction.  This assumption allows the element factor to be eliminated because the 

interferers are assumed to come from a fixed elevation angle; hence the response of the 

antenna can be lumped into the received power.  Finally, the steering vectors will be 

rewritten as a function of the azimuth angle ( nφ ) only, so that (5.18) simplifies to 

∑
=

=
M

n
tst nnn

1
)()()( φvX .                                            (5.19)  



 
 

 

66

The autocorrelation matrix becomes 
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Assuming the interference to be independent, it follows that 

( )( ) 0])()()()([ =H
mmmnnn tstsE φφ vv                                 (5.21) 

because 0)]()([ =∗ tstsE mn  for nm ≠ .  For m=n, it follows that the components of the 

autocorrelation matrix become 
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Equation (5.20) along with (5.22) gives the components of the autocorrelation matrix, 
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σXXR .               (5.23) 

The expected autocorrelation matrix can now be calculated from (5.23) and the fact 

that the interference is uniformly distributed in the azimuth direction.  The expected value 

of (5.23) is taken, resulting in 
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In order to evaluate the integral in (5.24), the following variable substitutions are made: 

ababba Rxx φcos)( =−                                                (5.25) 

ababba Ryy φsin)( =− .                                              (5.26) 

In (5.25) and (5.26), abR  is the distance between elements a and b.  Using the 

trigonometric identity 

)sin()sin()cos()cos()cos( vuvuvu +=− ,                              (5.27) 

and substituting (5.25)-(5.27) into (5.24), the integral in (5.24) becomes 

∫
−−π

π
φφφθ

λ
π2

0
2

)cos(sin2
n

abnab dRj
e  .                                 (5.28) 

Since the integral in (5.28) is over a complete cycle for nφ , the term abφ  will not 

contribute to the integral and can be arbitrarily set to zero without influencing the result.  

The Bessel function of the first kind of order n can be written in integral form as [78] 
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φφφ
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n .                                  (5.29) 

Hence, (5.24) can be rewritten using (5.28) and (5.29), as 
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Equation (5.30) shows that the expected autocorrelation matrix depends on the total 

interference power incident on the array, and not on the number of interferers.  Equation 

(5.30) along with (5.16) defines the optimization problem used to determine an array for 

suppressing interference.  A method of determining an optimal array is the subject of the 

following section. 

5.5.   Using Simulated Annealing to Find an Optimal Array 

The Simulated Annealing optimization algorithm described in Chapter 4 was found 

to be suitable for the problem at hand.  For simplicity, an elevation angle of °= 90θ  is 

chosen for the interferers.  The candidate arrays (or points in the feasible space, as 

discussed in Section 4.4) at every time step are represented by a real vector in N2ℜ , 

which represents the x- and y- positions of the N-elements. 

In using the SA algorithm, a circular array is chosen as the initial array.  Ideally, the 

initial array chosen will have no effect on the optimization result.  The perturbation 

mechanism is implemented by choosing a random vector in N2ℜ  that has an Euclidean 

norm that is zero-mean and with a small variance.  The variance is chosen such that the 

average perturbation for each element is on the order of λ01.0 ; a large variance will lead 

to an imprecise search of the solution space, while a small variance will lead to a long 

simulation time.  The 2N components of this vector are added to the x-y coordinates of 

the current array.  If the perturbation moves the elements too close to each other ( λ25.0<

), then the perturbation is discarded and a new perturbation selected.  Another constraint 
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is imposed such that all elements stay within λ75.0  of the origin (center of the initial 

circular array) to keep the search space finite.  This number was chosen to be large 

enough such that the resulting optimal arrays were not altered by this constraint. 

The initial temperature 0T  was chosen such that virtually all (>99%) of 

perturbations are accepted.  The temperature is held constant for a fixed number (P) of 

perturbations.  The temperature is then multiplied by a factor u<1.  The solution array is 

then again perturbed P times.  This process is performed until T is small enough that no 

perturbations that decrease the objective function are accepted (recall the optimization 

problem is one of maximization); once this happens the solutions has converged upon a 

local maximum.  If P is sufficiently large and the temperature decreased sufficiently 

slowly, this method will converge to the global optimum [68].  In the solution for N=6, 

the parameters used were u=0.99, P=50 000, and 0T =12.  The method of determining 

these numbers was to use small values of u, P and 0T , and increase them until the 

simulations consistently returned the same solution starting from various initial arrays.  

As u, P, and 0T  are increased, the probability of a correct (globally optimal) solution 

increases; if they are decreased, the solution is less likely to be optimal.  However, the 

tradeoff lies in the computational time needed.  The simulation for the 6-element array 

described below was performed using MATLAB on a computer with a 2.9 GHz 

processor, and the solution time was approximately 8 hours. 

The optimum array configurations for the N=4, 5 and 6 element arrays are found 

using the above optimization procedure and plotted in Figures 16, 17 and 18, 

respectively.  The dotted circles in these figures are of radius λ25.0 .  The results suggest 
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that the interference suppression capabilities are best for arrays spaced as closely as 

possible.  They all have a center element and are surrounded by a circular array of radius 

λ25.0  (the minimum distance allowed).  This suggests a trade-off between interference 

suppression and largely spaced arrays used for diversity or to minimize mutual coupling. 

 

Figure 16.  Optimum N=4 element array (measured in units of λ ). 
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Figure 17.  Optimum N=5 element array (measured in units of λ ). 
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Figure 18.  Optimum N=6 element array (measured in units of λ ). 

5.6.   Evaluating the Performance of the Optimal Arrays 

In order to illustrate the performance of the optimum array, it will be compared to 

three other standard arrays: a circular array with radius chosen such that the spacing 

along the circle between elements is λ5.0  as suggested in [79], a linear array with 

interelement spacing λ5.0  oriented along the z-axis, and a rectangular array with 

interelement spacing λ5.0 . 

Interferers from six different angles are chosen, each randomly selected from a 

uniform distribution (on [0, °360 ]) and all at the same elevation angle ( °90 ).  The output 

power ( wRw XX
H ) is calculated when the weights are given by the optimal weight vector 

for this specific instance, given in (5.31).  This is the steady-state solution the adaptive 
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power-minimization algorithm would converge to in practice, if the first weight is fixed 

at unity. 

11

1
1

eRe
eR

w 1
XX

XX
−

−

= Topt                                                   (5.31) 

This process is repeated 100,000 times to form an average output power for this type of 

interference environment.  The results are listed in Table I, where the average output 

power is given relative to the power allowed by the optimal array. 

TABLE I 
OUTPUT POWER COMPARISON AMONG DIFFERENT ARRAYS 

Array Relative Power (N=4) Relative Power (N=5) Relative Power (N=6) 
Optimal 0 dB 0 dB 0 dB 
Circular 11.5 dB 16.9 dB 32.2 dB 

Rectangular 7.1 dB 20.5 dB 32.4 dB 
Linear 12.2 dB 24.4 dB 37.8 dB 

 
 

Table I illustrates the dramatic effect that array geometry can have on the 

interference-suppression capabilities of the array.  The optimum arrays performed 

significantly better on average than the standard arrays used in practice, much more than 

reasonably expected.  The output powers for the standard arrays are much higher than 

those for the optimal arrays, clearly showing their superior interference-suppression 

capabilities. 

After viewing Figures 16-18, one may easily conjecture what the optimal 7-element 

array would be.  The optimization procedure is applied and confirms the solution to be 

that as given in Figure 19.  The interesting thing about the optimal 7-element array is that 

it is a hexagonally sampled planar array.  In multidimensional digital signal processing, it 

is well known that the optimal sampling strategy to avoid aliasing for circularly 
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bandlimited signals is a hexagonally sampled lattice [80].  Hence, while sampling for 

reconstruction and sampling for interference suppression are fundamentally different, the 

problems are strongly related and the optimal solutions come out the same (for the case 

of a circular interference environment).  This parallel strengthens the methods and 

procedures applied in determining optimal arrays. 

 

Figure 19.  Optimum N=7 element array (measured in units of λ ). 

The array geometry in Figure 19 is the layout of the 7-element GAS-1 (GPS 

Antenna System) array developed by Raytheon whose primary function is to suppress 

interferers or jamming [75].  The method of this paper confirms that the GAS-1 geometry 

used is optimum for the case of a planar array in a circular interference environment.  The 

elements of the GAS-1 array are circular patches each operating at the dual frequencies of 

L1 (1.575 GHz) and L2 (1.227 GHz). 
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The method derived above seeks to minimize output power.  While this has its 

advantages, the primary disadvantage is that the desired signal may be muted along with 

the interferers.  To get an idea of the signal to interference ratio (SIR) at the output of the 

array, a few test cases are considered.  In Case 1, the desired signal arrives from °= 45dθ  

and °= 0dφ .  Twelve interferers are selected from a fixed elevation angle ( °= 90Iθ ) and 

a random azimuth angle and 30 dB Interference-to-Signal Ratio (ISR).  The weight vector 

used for each case is the vector that minimizes the MSE, given in (3-30).  The process 

will be repeated (random interference directions selected) 100,000 times to form an 

expected SIR, given by 

∑

∑
=

n
n

n
n

I

S
SIR ,                                                  (5.32) 

where nS  and nI  are the output signal power and the output interference power for the 

thn  situation, respectively.  The resulting SIRs for N=5, 6, and 7 elements are determined 

for the optimal array along with a circular, linear, and rectangular array as before.  The 

results for Case 1 are given in Table II.  Case 2 will be the same as Case 1 except the 

signal arrives from °= 0dθ .  The results for Case 2 are presented in Table III.  Case 3 

will be the same as Case 1 except the signal arrives from °= 90dθ .  The results for Case 

3 are presented in Table IV. 
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TABLE II 
  RELATIVE SIR FOR CASE 1 

Array Relative SIR (N=5) Relative SIR (N=6) Relative SIR (N=7) 
Optimal      0 dB 0 dB 0 dB 
Circular -6.45 dB -11.4 dB -26.9 dB 

Rectangular -6.41 dB -15.85 dB -25.13 dB 
Linear  2.98 dB -5.82 dB -19.15 dB 

 
 

TABLE III 
  RELATIVE SIR FOR CASE 2 

Array Relative SIR (N=5) Relative SIR (N=6) Relative SIR (N=7) 
Optimal     0 dB         0 Db       0 dB 
Circular -3.9 dB -10.15 Db -35.9 dB 

Rectangular -5.8 dB -19.25 dB -27.2 dB 
Linear     5 dB -10.24 dB    -21 dB 

 
 

TABLE IV 
RELATIVE SIR FOR CASE 3 

Array Relative SIR (N=5) Relative SIR (N=6) Relative SIR (N=7) 
Optimal        0 dB       0 dB       0 dB 
Circular -11.3 dB    2.5 dB  -4.3 dB 

Rectangular -11.6 dB -0.45 dB -6.64 dB 
Linear -15.1 dB   -7.6 dB -4.29 dB 

 
 
 

The results given in Tables II-IV show that on average, the optimal array boosts the 

SIR compared to the other arrays.  In some situations, like the N=7 arrays for Cases 1 and 

2, the optimal array produces significant SIR gains compared to the standard arrays.  The 

linear array has some advantage in blocking interference in that it has a smaller field of 

view than the other 2-D arrays.  This is exhibited by the slightly superior results seen for 

Case 1 and 2 when N=5.  However, when the signal is in the same plane as the interferers 
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(Case 3) the linear array performs poorly.  Therefore, while the optimization problem was 

set up to minimize output power and thereby reduce interference, it does indeed raise the 

output SIR as desired. 

5.7.   Summary 

To briefly summarize the chapter, an optimization problem (5.16) has been derived 

whose solution yields an optimal array for suppressing interference.  Optimizing an 

adaptive antenna array’s geometry can be done by defining an interference environment, 

or expected directions and level of interference.  In this manner, the array is not 

optimized for a specific situation, but rather optimized to maximize the performance on 

average based on the expected environment the array is to operate in.  A specific problem 

of a circular interference environment was studied, and a method of solution was 

demonstrated using the Simulated Annealing optimization algorithm.  In addition, the 

results implicitly show that the array geometry used has a significant effect on the array’s 

performance. 

 

 

 



 

VI.   MINIMUM SIDELOBE LEVELS FOR LINEAR ARRAYS 

6.1.   Introduction 

One-dimensional arrays have been extensively analyzed, dating back to the early 

part of the 20th century.  Their ubiquity in textbooks and actual applications is partly due 

to the relative ease with which they are analyzed.  However, the question of determining 

the minimum possible sidelobe level for an N-element linear array has yet to be 

determined.  Determining this for a linear array of arbitrary elements, steered to an 

arbitrary angle is the goal of this chapter. 

Methods of weight selection were discussed in Chapter 3.  The most important for 

the discussion of this chapter is the Dolph-Chebyshev weighting method.  This method 

can determine minimum-sidelobe weights for uniformly spaced linear arrays of omni-

directional antennas.  Optimizing geometry for sidelobe minimization has also been 

examined via a range of techniques, as discussed in Chapter 1.  Recently, [17] used the 

Particle Swarm Optimization (PSO) method to determine optimum sidelobe-minimizing 

positions for linear arrays assuming the weights were constant.  

In this chapter, the weights and positions of a linear array will be optimized to 

lower sidelobes.  In [13],[17] the authors force the arrays to have symmetry about the 

center to keep the array factor real; the work in this chapter does not require this 

restriction.  In addition, the arrays will have no bounds on minimum or maximum 

element separation, except in Section 6.5 where a minimum element separation is needed. 

For a given linear array, a method of finding the optimum weights for minimizing 

the sidelobe level is derived given: 

• a beamwidth
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• the array element’s positions  

• the individual antenna’s radiation pattern 

• a desired direction ( dθ ) for the array to be scanned.   

This problem will be posed in convex form; thus it can be solved without searching 

through the space of weights as in [28].  The element positions will be unrestricted and 

the space will be extensively searched via PSO in order to find optimum positions in 

conjunction with the corresponding optimum weights.  The positions found via PSO are 

likely to be globally optimal as discussed in Section 6.4.  Consequently, the results 

presented here likely represent global bounds on the minimum-possible sidelobe levels 

achievable for a given beamwidth.  This information can be used by array designers in 

determining how well their arrays perform compared to the best design possible, to 

determine if altering the weights or element positions could potentially return a 

significant improvement in performance. 

6.2.   Problem Setup 
 

The basic geometry of a one-dimensional linear array is shown in Figure 20.  The 

positions of a one-dimensional N-element linear array can be written as a vector d=

),,( 21 Nddd K , where nd  is the position of the thn element measured from the origin 

along the z-axis.  Incoming plane waves are characterized by an angle θ  (measured from 

the z-axis) that specifies their direction of arrival.   
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Figure 20.  Basic setup of a linear N-element array. 

 
Assuming a vector w=( Nwww ,,, 21 K ) of complex excitation weights, the array 

factor (AF) can be rewritten from (2.20) as 

                                         ∑
=

=
N

n

jkdewAF n
n

1

cos),,( θθdw                                     (6.1) 

where λπ /2=k .  For a given angle θ , the array factor is a function of the weight vector 

and the positions of the elements.  It will be assumed that the elements are identical and 

oriented in the same direction.  The problem can be extended to arrays with distinct 

antenna elements in a straightforward manner.  The total radiation pattern )( θd,w,T  is 

then the product of the array factor and the element pattern, given by 

                                                ),()()( θθθ dw,d,w, AFfT = ,                                       (6.2) 

where )(θf  is each elements’ radiation pattern.  This chapter addresses determining the 

minimum possible sidelobe level of an N-element array for a given beamwidth.   

The sidelobe level of an array intrinsically depends on the element positions (d) and 

the weights (w).  Determining the minimum possible sidelobe level of an N-element 
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linear array consists of finding the optimum combination of weights and element 

positions that minimize the sidelobe level.  To accomplish this, Section 6.3 determines 

optimum weights for a linear array with arbitrary element positions.  Since the optimum 

weights can be determined for every linear array, the problem reduces to finding the 

optimum positions that (along with the corresponding optimum weights) yield a sidelobe 

level that no other combination of weights or element positions can improve upon. 

6.3.   Determination of Optimum Weights for an Arbitrary Linear Array 

For non-uniformly spaced linear arrays, a new method must be developed to 

determine the optimal sidelobe-minimizing weights.  In [27], an optimization procedure 

using linear programming (LP) was developed for sidelobe-level minimizing weights; 

however, their results only apply for symmetric arrays and real-valued weights. 

Let the positions of an arbitrarily spaced N-element linear array be described by the 

vector d.  The sidelobe level will be defined as the maximum value of the total radiation 

pattern outside of the main beam.  The beamwidth is then the angular range in which the 

radiation pattern is not to be minimized.  Letting Θ  represent the angles in which the 

radiation pattern is to be suppressed, the sidelobe level (SLL) can be written 

mathematically as 

                                       |),(| max θ
θ

dw,TSLL
Θ∈

= .                                           (6.3) 

The normalized radiation pattern is constrained to be unity towards the desired direction (

dθ ).  The optimum sidelobe-minimizing weights are therefore the solution to the 

optimization problem given in (6.4). 
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In (6.4), NC  is the set of all N-element vectors with complex components, and the 

complex weight vector w is the variable in the problem.  This problem can be put into a 

fairly simple convex optimization form, which is rapidly solvable and solutions are 

guaranteed to be globally optimum.   

To accomplish this, the weights are first expressed in terms of their real and 

imaginary parts, 

IM
n

RE
nn jwww += .                                                  (6.5) 

The real part of the total radiation pattern can then be written as 

{ } ( ) ( )}cossincoscos{)(),(Re
1

θθθθ n
IM
n

N

n
n

RE
n kdwkdwfT −= ∑

=

dw, ,             (6.6) 

and the imaginary part as 
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Next, Θ  is partitioned into M discrete sample points Mθθθ ,,, 21 K .  Selection of the 

sample points is discussed at the end of the section.  Minimizing the magnitude of the 

total radiation pattern at a fixed position iθ , while the beam is maximum in direction dθ , 

can be written as an optimization problem (with variables ,,,,, 11
IM
N

RE
N

IMRE wwww K  it  and 

is ), given in (6.8). 
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22
i  min ist +  

                                        s.t.    iii tTt ≤≤− )},(Re{ θdw,                                            (6.8) 

iii sTs ≤≤− )},(Im{ θdw,  

         1)},(Re{ =dT θdw,  

          0)},(Im{ =dT θdw,  

In the above optimization problem, it  and is  are dummy variables.  The inequality 

constraints in (6.8) on the real part of the total radiation pattern can be written as a linear 

inequality (for notational simplicity, let in
i
n kdp θcos= ), 
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Similarly, the constraints on the imaginary part of the total radiation pattern can also be 

expressed in this form.  Hence, (6.8) can be rewritten into the simpler form given in 

(6.10). 

22
i min ist +  

0ZA ≤its    ..                                                     (6.10) 

         BZ = 0 
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In (6.10), iA  is the matrix that describes the inequality constraints, B is a matrix that 

describes the equality constraints, Z is a vector of the problem variables (

,,,,, 211
IM
N

REIMRE wwww K it , is ), and 0 is a vector of zeros.  The optimization problem of 

(6.10) is a simple quadratic program, which is easily solved numerically [81]. 

This procedure can be accomplished at every location iθ  for which the total 

radiation pattern is to be suppressed.  Extend the vector Z to include the weights and all 

the dummy variables: 

]            [ 212111 MM
IM
N

RE
N

IMRET ssstttwwww LLL=Z .                   (6.11) 

Adding the constraints for all M positions to be included in the matrix A, the problem in 

(6.10) can be extended into the form given in (6.12). 

0BZ

0AZ

          

   ..

maxmin 22

,,1

=

≤

+
=

ts

st ii
Mi L

                                                (6.12) 

This problem will minimize the array factor at all desired locations.  Since 22
ii st +  is a 

convex function for all i , the pointwise maximum in (6.12) is also a convex function (as 

derived in Chapter 4). 

Finally, (6.12) does not guarantee that the magnitude of total array radiation pattern 

is a maximum at dθ  (the maximum could be anywhere outside the region Θ ).  To have a 

maximum at dθ , a necessary condition is for the derivative of the squared magnitude of 

the radiation pattern to be zero.  Writing )()()( θθθ jIFT +=  in terms of its real and 

imaginary parts, it follows that  
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⋅

  

))(())(( IjFjIFIjFjIF ′+′−+′−′+= .                            (6.13) 

At dθ , the equality constraints force F=1 and I=0, which implies that the squared 

magnitude of the total radiation pattern has zero derivative if 

0)},(Re{ ==′ dT
d
d

F θ
θ

dw, .                                      (6.14) 

This constraint is also a linear constraint on w, and it can be added to the matrix B.  

When this is implemented, the method is sufficient to have the maximum of the radiation 

pattern in the direction dθ  (at least for all cases considered in this chapter). 

In summary, the result is that (6.12) represents a convex optimization problem and 

is therefore solvable, and the solutions represent global optima [66].  This problem can be 

solved via a standard numerical optimization routine, or via commercial software such as 

MATLAB (for example, using the function fminimax). 

The only question left then is the selection of the number of sample points, M.  The 

only two values of θ  that need to be selected are those that define the boundary of the 

main beam; the remaining values can be selected fairly sparsely.  Usually, a spacing of 

°5  between sample points is sufficient.  Once the weights are determined, the total 

radiation pattern can be plotted to show that the sidelobes are indeed suppressed as 

desired, even in between the sampled points.  In theory, it is desirable to choose sample 

points as closely spaced as possible to guarantee the radiation pattern is suppressed.  In 
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practice, the method works with sparse spacing, and it is advantageous to choose a sparse 

sampling to speed up the computation time. 

The method developed in this section will return weights almost identical to that of 

the Dolph-Chebyshev method for uniformly spaced linear arrays of omnidirectional 

antenna elements.  The discrepancy results from the Dolph-Chebyshev method using null 

to null beamwidth and suppressing sidelobes outside of that region; this method 

suppresses sidelobes outside a specified beamwidth, which isn’t necessarily null to null.  

However, as will be seen in the Section 6.5, the difference is extremely small and the 

weights are the same to at least three significant digits for the arrays in question. 

6.4.   Broadside Linear Array 
 

In this section, broadside ( °= 90dθ ) N-element linear arrays of omnidirectional [

1)( =θf ] antennas are considered.  The goal is to determine the optimum element 

positions for minimizing sidelobes, and consequently, the global bound on sidelobe level 

for linear arrays.  Suppose the desired beamwidth is °∆2 ; then the region Θ  in which the 

radiation pattern is to be minimized can be written as 

}180or    0:{ d °≤≤∆+∆−≤≤°=Θ θθθθθ d .                      (6.15) 

The sidelobe level (SLL) for a given weight vector w can be expressed in dB as 

|),(|log20max)( 10 θ
θ

dw,w TSLL
Θ∈

= .                                 (6.16) 

Two cases will be analyzed in this chapter.  Case 1 will have a large beamwidth 

°∆2 = °60 , and Case 2 will have a relatively small beamwidth, °∆2 = °30 .   A minimum 

inter-element separation of λ25.0  can be enforced.  However, the results are the same 
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whether or not this constraint is applied since the elements will tend to separate largely 

from each other to achieve low sidelobes. 

Since for any array configuration d the optimum weights can be found, the 

problem now becomes one of finding the best antenna element positions to minimize the 

SLL.  For an array with two elements (N=2), the problem is a function of a single variable 

( 12 dd −  = element separation and hence a global optimum can easily be found).  For 

linear arrays with more than two elements, a search method needs to be employed that is 

rapid (without excessive computation time) and accurate (solutions are consistent and no 

other method leads to a better solution).  The Particle Swarm Optimization (PSO) method 

was found to be suitable for this task.  For a detailed discussion of the details of PSO that 

goes beyond the elementary discussion in Chapter 4, the reader is referred to [17, 82].   

While no method short of an exhaustive search can guarantee a global optimum 

for problems such as these (many local minima in the objective function), intelligent use 

of PSO will give high confidence that the solutions are indeed globally optimum.  For the 

results presented in this work, the PSO is used by initially choosing a set of P random 

arrays (these are the particles used in PSO).  The arrays are described by a vector of 

element positions, d.  For each position vector, the optimum weights are calculated and 

the sidelobe level is determined.  The element positions are updated via the PSO 

technique, and the process is repeated.  The algorithm is run using the PSO parameters 

set to 5.0=Vw , 0.21 =c , and 0.22 =c .  Each run of the algorithm is executed for 

approximately 20-200 iterations, or long enough such that several iterations no longer 
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decrease the objective function.  If repeated use of the algorithm does not produce 

identical results, P is increased until consistency is achieved.   

The number of particles P required for regular convergence is given in Table V.  

The number of particles required appears to grow roughly as N! which indicates PSO 

cannot consistently return optimum solutions for large arrays.  Because the arrays (or 

particles) start from random positions every time, and because the number of antenna 

elements is small, this method is fairly certain to return the globally optimum array if the 

number of particles is large and repeated application of the algorithm returns identical 

arrays.  Table V also gives the approximate time per simulation on a single 3.0 GHz 

processor running MATLAB (speedup by approximately a factor of S can be obtained if 

the code is written for S-processors in parallel). 

TABLE V 
NUMBER OF PARTICLES REQUIRED FOR CONVERGENCE FOR VARYING 

ARRAY SIZE WITH SIMULATION TIME 

Array Size (N) P Time (Hours) 
2 2 0.05 
3 4 0.2 
4 16 1.3 
5 100 7 
6 700 50 
7 3000 300 

 
 

Results for broadside arrays of size N=2-7 elements are presented in Tables VI-IX 

(note that 01 =d  for all arrays in this chapter).  For both cases, the optimum arrays are 

very regular, with either uniform or nearly uniform spacing.  The weights for this case are 

allowed to be complex, but are found to be real valued.  The weights given in Table VII 

are identical to the Dolph-Chebyshev weights (to at least 3 significant digits).  Case 2 has 
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a larger array length, consistent with results developed in [83], in which the beamwidth is 

reported to decrease with increased array length.  The magnitude of the array factor for 

both cases is shown in Figure 21 for N=6, and the results for N=7 are shown in Figure 

22.  Because the results for Case 1 have uniform spacing, the method in [15] correctly 

determines the optimum sidelobe level for this problem.  However, this will not hold in 

future scenarios. 

TABLE VI 
OPTIMUM ELEMENT POSITIONS (IN λ ) FOR CASE 1 (BW= °=° 90 ,60 dθ ) 

N  2d  3d   

 Error! 
Objects 
cannot 

be 
created 

from 
editing 

field 
codes.  5d   6d  7d  SLL (dB) 

2 0.667      -6.02 
3 0.667 1.333     -16.90 
4 0.667 1.333 2.000    -27.05 
5 0.667 1.333 2.000 2.667   -39.45 
6 0.667 1.333 2.000 2.667 3.333  -51.21 
7 0.667 1.333 2.000 2.667 3.333 4.000 -62.62 

 
TABLE VII 

OPTIMUM WEIGHTS FOR CASE 1 (BW= °=° 90 ,60 dθ ) 

N 1w  2w  3w  
4w  5w  6w  7w  

2 0.500 0.500           
3 0.286 0.429 0.286        
4 0.154 0.346 0.346 0.154       
5 0.083 0.247 0.340 0.247 0.083    
6 0.044 0.166 0.290 0.290 0.166 0.044  
7 0.024 0.107 0.227 0.286 0.227 0.107 0.024 
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TABLE VIII 
OPTIMUM ELEMENT POSITIONS (IN λ ) FOR CASE 2 (BW= °=° 90 ,30 dθ ) 

N  2d   3d  

 Error! 
Objects 
cannot 

be 
created 

from 
editing 

field 
codes. 5d    6d  7d  SLL (dB) 

2 0.794      -1.95 
3 0.794 1.589     -6.59 
4 0.794 1.589 2.383    -12.24 
5 0.794 1.589 2.383 3.178   -18.18 
6 0.794 1.589 2.383 3.178 3.97  -24.15 
7 0.794 1.589 2.383 3.178 3.97 4.762 -30.07 

 
 

TABLE IX 
OPTIMUM WEIGHTS FOR CASE 2 (BW= °=° 90 ,30 dθ ) 

N    1w   2w  3w    4w  5w    6w  7w   

2 0.500 0.500           
3 0.286 0.429 0.286        
4 0.154 0.346 0.346 0.154       
5 0.083 0.247 0.340 0.247 0.083    
6 0.044 0.166 0.290 0.290 0.166 0.044  
7 0.059 0.127 0.198 0.227 0.199 0.130 0.060 
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         (a) ,60( °=BW  )90°=dθ                               (b) ,30( °=BW  )90°=dθ       

 
Figure 21.  Magnitude of array factor for optimal arrays (N=6). 

 
 

 
            (a) ,60( °=BW  )90°=dθ                               (b) ,30( °=BW  )90°=dθ       

 
Figure 22.  Magnitude of array factor for optimal arrays (N=7). 
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6.5.   Array Scanned to 45 Degrees 
 

Suppose now the goal is to find the optimum array pattern for an arbitrarily spaced 

N-element linear array scanned to °45  from broadside ( °= 45dθ ).  This problem is 

solved in an identical manner to that in Section 6.4.  However, for this problem, the 

arrays tend to favor closely spaced elements.  Consequently, a minimum separation of 

λ25.0  between elements was enforced, as in [30].  The optimum element positions and 

the weight vectors are given in Tables X-XIII.  The magnitude of the array factor for both 

cases is shown in Figure 23 for N=6, and Figure 24 plots the results for N=7.   

The weights found in this section are complex.  For clarity, YX∠  is equal to 

)sin()cos( YjXYX + .  The positions found are very irregular.  The elements favor 

having at least one element separation being the minimum allowable ( λ25.0 ) for many 

of the cases.  Comparing these results to Section 6.4, it is clear that it is more difficult for 

a linear array to have low sidelobes when it is scanned away from broadside. 

TABLE X 
OPTIMUM ELEMENT POSITIONS (IN λ ) FOR CASE 1 (BW= °=° 45 ,60 dθ ). 

N  2d   3d  

Error! 
Objects 
cannot 

be 
created 

from 
editing 

field 
codes.  5d   6d   7d  SLL (dB) 

2 0.508      -0.76 
3 0.250 1.432     -5.44 
4 0.250 1.512 1.762    -8.74 
5 0.250 1.475 1.725 1.975   -12.64 
6 0.250 0.707 1.442 1.912 2.162  -19.60 
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7 0.250 0.734 1.369 1.850 2.108 3.935 -23.00 
 
 

 
 
 
 
 
 

TABLE XI 
OPTIMUM WEIGHTS FOR CASE 1 (BW= °=° 45 ,60 dθ ) 

 
(a) Results for N=2-4. 

 N=2 N=3 N=4 

1w  0.499 °∠43425.0  °∠45304.0  

2w  °∠231501.0  °∠248465.0  °∠250415.0  

3w   °∠5386.0  °∠21408.0  

4w    °∠227297.0  
 

(b) Results for N=5-7. 
 N=5 N=6 N=7 

1w  °∠30287.0  °∠51231.0  °∠44146.0  

2w  °∠246345.0  °∠260293.0  °∠257258.0  

3w  °∠63359.0  °∠132172.0  °∠143195.0  

4w  °∠279427.0  °∠37167.0  °∠48195.0  

5w  °∠13522.0  °∠272292.0  °∠292275.0  

6w   °∠121237.0  °∠145169.0  

7w    °∠25057.0  
 

 
TABLE XII 

OPTIMUM ELEMENT POSITIONS (IN λ ) FOR CASE 2  (BW= °=° 45 ,30 dθ ) 

N  2d  3d   

Error! 
Objects 
cannot 

be 
created 

from 
editing 5d   6d   7d  SLL (dB) 
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field 
codes.  

2 0.535      -0.31 
3 0.250 2.030     -3.77 
4 0.302 1.933 2.976    -6.92 
5 0.250 2.130 2.380 3.617   -8.85 
6 0.250 2.123 2.373 3.653 4.657  -10.39 
7 0.250 0.926 2.112 2.362 3.806 4.056 -12.36 

 
 

 
 
 
 
 
 

TABLE XIII 
OPTIMUM WEIGHTS FOR CASE 2 (BW= °=° 45 ,60 dθ ) 

 
(a)  Results for N=2-4. 

 N=2 N=3 N=4 

1w  0.50 °∠47469.0  °∠37298.0  

2w  °∠2245.0  °∠248524.0  °∠248335.0  

3w   °∠21134.0  °∠226298.0  

4w    °∠330191.0  
 

(b)  Results for N=5-7. 
 N=5 N=6 N=7 

1w  °∠4923.0  °∠49196.0  °∠4221.0  

2w  °∠247252.0  °∠248218.0  °∠23818.0  

3w  °∠224322.0  °∠223355.0  °∠111165.0  

4w  °∠70385.0  °∠64361.0  °∠228293.0  

5w  °∠175195.0  °∠169186.0  °∠69245.0  

6w   °∠251068.0  °∠164163.0  

7w    °∠7162.0  
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         (a) ,60( °=BW  )45°=dθ                               (b) ,30( °=BW  )45°=dθ   

     
Figure 23.  Magnitude of array factor for optimal arrays (N=6). 

 

 
(a) ,60( °=BW  )45°=dθ                               (b) ,30( °=BW  )45°=dθ       

 
Figure 24.  Magnitude of array factor for optimal arrays (N=7). 

 
6.6.   Array of Dipoles Scanned to Broadside 
 

http://www.antenna-theory.com/antennas/dipole.php
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The broadside case is considered again, this time assuming the antennas are short or 

ideal dipoles having a normalized radiation pattern 

θθ sin)( =f .                                                     (6.17) 
 

For this case, no minimum separation is required since the elements tend to spread out as 

in Section 6.4.  The problem is solved again as in Section 6.4.  The resulting optimum 

element positions and weights are given in Tables XIV-XVII.  The magnitude of the total 

radiation pattern for both cases is shown in Figure 25 for N=6, and Figure 26 gives the 

results for N=7. 

 
TABLE XIV 

OPTIMUM ELEMENT POSITIONS (IN λ ) FOR CASE 1 WITH DIPOLES (BW=
°=° 90 ,60 dθ ) 

N  2d  3d   

Error! 
Objects 
cannot 

be 
created 

from 
editing 

field 
codes.   5d  6d   7d  SLL (dB) 

2 0.793      -11.15 
3 0.726 1.452     -22.38 
4 0.703 1.403 2.116    -34.00 
5 0.696 1.391 2.087 2.788   -45.40 
6 0.693 1.382 2.069 2.755 3.441  -56.50 
7 0.681 1.362 2.043 2.724 3.405 4.086 -66.90 

 
 

TABLE XV 
OPTIMUM WEIGHTS FOR CASE 1 WITH DIPOLES (BW= °=° 90 ,60 dθ ) 

N    1w   2w  3w    4w  5w    6w  7w   

2 0.500 0.500        
3 0.276 0.448 0.276      
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4 0.150 0.351 0.351 0.148    
5 0.082 0.25 0.343 0.246 0.079   
6 0.043 0.165 0.292 0.292 0.165 0.043  
7 0.023 0.106 0.227 0.288 0.227 0.106 0.023 

 
 
 
 
 
 

TABLE XVI 
OPTIMUM ELEMENT POSITIONS (IN λ ) AND SLL FOR CASE 2 WITH DIPOLES 

(BW= °=° 90 ,30 dθ ) 

N  2d  3d   

 Error! 
Objects 
cannot 

be 
created 

from 
editing 

field 
codes.  5d   6d  7d  SLL (dB) 

2 1.130      -4.64 
3 0.951 1.900     -9.93 
4 0.915 1.779 2.675    -15.70 
5 0.876 1.723 2.565 3.463   -21.70 
6 0.842 1.681 2.516 3.358 4.233  -27.50 
7 0.860 1.706 2.528 3.362 4.192 5.024 -33.58 

 
 
 

 
TABLE XVII 

OPTIMUM WEIGHTS FOR CASE 2 WITH DIPOLES (BW= °=° 90 ,30 dθ ) 

N    1w   2w  3w    4w  5w    6w  7w   

2 0.500 0.500         
3 0.341 0.313 0.347      
4 0.224 0.283 0.273 0.220    
5 0.139 0.224 0.270 0.224 0.143   
6 0.087 0.168 0.239 0.238 0.178 0.090  
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7 0.047 0.122 0.196 0.231 0.208 0.134 0.062 
 

 
 

 
         (a) ,60( °=BW  )90°=dθ                               (b) ,30( °=BW  )90°=dθ       

 
Figure 25.  Magnitude of the total radiation pattern for optimal arrays of dipoles (N=6). 

 

 
         (a) ,60( °=BW  )90°=dθ                               (b) ,30( °=BW  )90°=dθ       

 
Figure 26.  Magnitude of the total radiation pattern for optimal arrays of dipoles (N=7). 
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The results of this section, compared with the results of Section 6.4, show that the 

optimum linear array element positions (and associated weights) will be different 

depending on the type of antenna elements used in the array.  The elements in this section 

have a larger spacing than the broadside array considered in Section 6.4.  The individual 

dipole’s radiation pattern works to lower the total radiation pattern away from broadside.  

Consequently, this helps to lower the overall sidelobe level, so that an array of dipoles 

has lower sidelobes than an array of omnidirectional radiators.  This is evident by 

comparing the results of this section and Section 6.4. 

6.7.   Mutual Coupling 

Mutual coupling is present in all antenna arrays to some degree.  This coupling 

affects the radiation pattern of the elements which can degrade the overall radiation 

pattern [84].  In this section, the extent to which the above results vary due to mutual 

coupling is considered. 

Without mutual coupling, the output of the array will be written as idealX .  When 

mutual coupling is present, the output of the array will be written as actualX .  Because of 

the linearity in Maxwell’s equations, it is reasonable to model the coupling as a linear 

system.  Hence the relationship between the ideal and actual array outputs can be written 

as 

idealactual CXX = ,                                               (6.18) 

where C is a square matrix known as the mutual coupling matrix.  This matrix can be 

modeled as [85] 

1)( −+= IZC LL ZZ ,                                              (6.19) 



 
 

 

100

where LZ  is the load impedance in each element.  In (6-19), Z is the impedance matrix, 

which relates the current into each antenna to the voltage, 

V=ZI.                                                          (6.20) 

If the mutual coupling matrix is known, then the array input can be pre-multiplied 

by the inverse of the coupling matrix to obtain the decoupled weights, as in (6.21). 

actualXCX 1−=                                                   (6.21) 

Since the output of the array is given by  

actual
HHy XCwXw 1−==  ,                                      (6.22) 

the optimal weights derived in section 6.3 can be replaced by 

optopt wCw 1−=′ .                                                  (6.23) 

The resulting total radiation patterns will then be the same as presented here, to the extent 

that the mutual coupling matrix model is correct.  Experimental results by Huang et al. 

[85] suggest that the model performs fairly well.  A circular array of dipoles was 

considered in that work, which will necessarily have a strong degree of mutual coupling 

because the elements are each in line with the other element’s direction of maximum 

radiation.  Using (6.23), the compensated radiation patterns for the arrays were compared 

to the ideal or non-coupled case and the results were found to be in agreement.  Hence, it 

is expected that arrays without such a strong degree of coupling (as commonly used in 

practice), can also be accurately modeled using (6.18) and (6.19). 

6.8.   Conclusions 
 

This chapter determined the limits of performance on linear arrays of size N=2-7.  

A method of determining globally optimum weights for minimizing sidelobes for a given 



 
 

 

101

linear array was presented.  The elements were then varied in position until it was certain 

that a global optimum was found.  Consequently, it is very likely that no other weight 

strategy or element placement scheme will lead to sidelobes lower than those presented in 

this paper.  These results can be used as a benchmark in comparing existing array 

performance to determine if it is worth updating the array placement or weighting 

strategy. 

 
 



 

VII.   MINIMIZING SIDELOBES IN PLANAR ARRAYS 

7.1. Introduction 
 

The natural next step in studying sidelobe-minimization in antenna arrays is to look 

at two-dimensional or planar arrays.  In this chapter, many of the ideas from Chapter 6 

are extended to two-dimensional arrays, which are mathematically similar but the total 

radiation pattern is more complex.   

Sidelobe minimization has received renewed interest due to the difficult nature of 

the wireless channel.  To block interference, it is best to place nulls in the direction of the 

interference.  However, this often does not work well in practice.  For example, the 

European standard for 3rd generation of mobile communication is known as Wideband 

Code Division Multiple Access (WCDMA).  In this scheme, the same frequency 

spectrum is shared simultaneously by all users; for an in-depth description, see [86].  

Consequently, interference is a major problem.  These systems are designed to work with 

a large number of users, and since an N-element antenna array can only place N-1 nulls, 

an impractically large number of antennas would be needed to null out signals from all 

directions not of interest.  In addition, due to multipath effects, each signal will be 

arriving from several distinct angles, which further reduces the performance of a nulling 

based approach.  In [87], the performance of arrays with different weighting methods 

used in WCDMA systems are compared.  It was found that for a large number of 

interferers, a low sidelobe method will outperform a nulling method.  The low sidelobe 

method is also preferred because no processing needs to be performed to determine 

direction-of-arrivals for varying signals.  Hence, as the capacity requirements of wireless 

http://www.antenna-theory.com/definitions/multipath.php
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communication systems increase, methods for reducing sidelobe levels will become 

increasingly important. 

In addition, the WCDMA systems should not be modeled using a single-frequency 

or narrowband total radiation pattern.  To address this, wideband arrays will be studied in 

the latter half of this chapter.  The sidelobe-minimizing weighting methods will be 

extended to work for wideband arrays.  Previous work has been performed in an attempt 

to develop wideband sidelobe-minimizing weights.  In [88], the author develops a 

wideband weighting method that works for 2D rectangular arrays.  This method does 

incorporate the antenna patterns into determining the weight vector, which increases the 

utility of the method.  However, the results of that work assume all signals arrive from a 

fixed elevation angle, which is a major restriction.  In addition, the results are clearly 

suboptimal in viewing the resulting sidelobes. 

Other wideband weighting methods use antenna coefficients that vary with 

frequency in order to improve the radiation pattern over a range of frequencies.  This is 

done using a tapped delay line filter in [89], and with a recursive filter in [90].  In this 

chapter, the weights will continue to be constant (not a function of frequency) so that the 

weights derived are easily implemented in a real system. 

The chapter is organized as follows.  In Section 7.2, the two-dimensional sidelobe 

minimization problem is addressed.  In Section 7.3, sidelobe-minimizing weights are 

developed for two-dimensional arrays of arbitrary elements.  In Section 7.4, optimal 

arrays and sidelobe levels are obtained for arrays of omnidirectional antennas of size 

N=4-7 for two distinct beamwidths.  In Section 7.5, optimal arrays and sidelobe levels 
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are obtained for arrays of patch (or microstrip) antennas.  A method of determining 

weight-minimizing sidelobes over a range of frequencies is developed in Section 7.6.  

Optimal arrays and sidelobe levels are obtained for wideband arrays of omnidirectional 

antennas in Section 7.7.  Finally, in Section 7.8 optimal arrays and sidelobe levels are 

obtained for wideband arrays of patch antennas, and conclusions presented in Section 7.9. 

7.2.   Two-Dimensional Symmetric Arrays 

The elements of the array are assumed to lie in the x-y plane, at z=0.  The position 

of the thn element is )0,,( nnn yxd =  as shown in Figure 27. 

 

Figure 27.  Arbitrary planar array. 

The output or radiation pattern of an antenna array (or spatial filter) is given by 

∑
=

=
+N

n
ekkfwkkT nyyknxxkj

yxnnyx

1
),(),,,(

)(
Dw                             (7.1) 
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where nw  is the weight multiplying the signal of the thn  element, and ),( yxn kkf  is the 

antenna gain for the thn  element in the direction determined by ),( yx kk .  It is desired for 

the array pattern to have a maximum at the desired direction, denoted ).,( ydxd kk  

This chapter deals with two-dimensional arrays with symmetry about the origin.  

That is, if an element is located at )0,,( nnn yxd =  and not at the origin, there exists 

another element in the array with the same weighting coefficient located at 

)0,,( nnn yxd −−=− .  This constraint keeps the array factor real when the weights are 

real, allowing efficient computation of the results. 

When the antennas in the array are identical (have the same individual radiation 

pattern), the radiation pattern for the entire antenna array takes the form given in (7.2) if 

there is an element at the origin (odd number of elements).  If there is an even number of 

elements, the radiation pattern will have the form given in (7.3). 

∑
+
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2/)1(

2
1 )cos(2),(),(),,(

N

n
nynxnyxyxyx ykxkwkkfkkfwkkT Dw,             (7.2) 

                         ∑
=

+=
2/

1

)cos(2),(),,(
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n
nynxnyxyx ykxkwkkfkkT Dw,                      (7.3) 

7.3.   Sidelobe-Minimizing Weights for Two-Dimensional Arrays 

A method of sidelobe minimization for symmetric linear arrays with real weights 

was given as an example in Section 4.2.  The results are now extended for two-

dimensional arrays of non-isotropic elements.  It will be assumed that the array positions 

D are known, the array is to be steered toward 0=dθ  or )0 ,0(),( =ydxd kk , and to have a 

specified beamwidth for the main beam. 
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The discussion will follow the development in Section 4.2.  The transition region is 

defined as the region in ),( yx kk  space in which the sidelobes are not to be suppressed.  

The suppression region Θ  is now two-dimensional, and a circular transition region will 

be assumed.  For a circular transition region, the cutoff region occurs when cθθ ≥ .  The 

suppression region can be specified as 

















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
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222 2
:),(

λ
π

yxcyx kkkkk ,                                  (7.4) 

where a cutoff value ( λθπ /sin2 cck = ) is specified.  The cutoff value dictates how wide 

or narrow the array’s mainbeam is to be.  The suppression region is illustrated in Figure 

28 in ),( yx kk  space.  The region in the ),( yx kk  plane with magnitude less than λπ /2  is 

commonly referred to as the visible region.  Values of ),( yx kk  outside of this region do 

not correspond to any value of ),( φθ  at the frequency of interest.  
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Figure 28.  Suppression region for two-dimensional arrays. 

The suppression region can be sampled at R places as in Section 4.2.  Each sample 

point is denoted by ),( yixi kk  for Ri  , 2, ,1 K= .  The parameter R is chosen sufficiently 

large such that when the resulting radiation pattern is plotted, it is suppressed even 

between sample points.  The LP problem of (4-20) is rewritten to include the non-

isotropic element pattern in (7.5).   

RitkkT

Tts

t

yixi  , 2, ,1   ,|),,(|         

1)0 ,0 ,(    . .

           min

K=≤

=

Dw,

Dw,                             (7.5)  

The constraints in (7.5) are again linear functions of the weights, as seen in (7.2-7.3).  

Hence, the constraints in (7.5) can be rewritten as affine inequalities exactly as done in 
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Section 4.2.  The result is that the problem of finding the optimal sidelobe-suppressing 

weights for two-dimensional array of non-isotropic elements is again a linear program, 

and therefore rapidly solvable. 

As an example, consider the 7-element hexagonal array of Figure 19, but with a 

radius of λ77.0 .  A weighting method with a linear phase-taper (from Section 3.2) will 

be used for comparison.  When the array is steered to broadside, the sidelobe level for the 

linear phase-tapered array is -10.9 dB.  The beamwidth is °30 .  Using this beamwidth to 

define the suppression region as in Figure 28, the optimal weights can be determined.  

The sidelobe level for the array factor with the optimal weights is -13.9 dB.  The optimal 

array factor is plotted, along with the array factor using the phase-tapered weights, in 

Figure 29 (elevation plot for °= 0φ ) and Figure 30 (elevation plot for °= 45φ ).  The 

positions and optimal weights are listed in Table XVIII. 
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Figure 29.  Array factors for optimal weighted and phase-tapered array ( °= 0φ ). 
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Figure 30.  Array factors for optimal weighted and phase-tapered array ( °= 45φ ). 

 

TABLE XVIII 
OPTIMAL WEIGHTS FOR 7-ELEMENT HEXAGONAL ARRAY 

Position Weight 
(0, 0) 0.200 

±  (0.77, 0) 0.133 
±  (0.385, 0.667) 0.133 
±  (-0.385, 0.667) 0.133 

 

7.4    Sidelobe-Minimizing Weights for Scanned Two-Dimensional Arrays 

 In this section, the procedure of Section 7.3 is extended for two-dimensional arrays 

scanned from broadside.  It is assumed that the array is scanned towards ),( dd φθ , so that 

the wavevector components in the desired direction are 

ddxdk φθ
λ
π

cossin
2

=                                                    (7.6) 
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                ddydk φθ
λ
π

sinsin
2

=                                                     (7.7) 

Two beamwidths are specified.  The first is the polar (elevation) beamwidth θ∆ , which 

is the beamwidth when the azimuth angle is fixed at dφ .  The second is the azimuth 

beamwidth φ∆ , which is the beamwidth when the polar (elevation) angle is fixed at dθ .    

The method of Section 7.3, in which the weights are real, will not produce optimal 

weights when the array is to be steered from broadside.  As a result, the complex method 

of Section 6.3 must be used.  Once the suppression region has been specified as in Figure 

28, the method can be directly implemented for the two-dimensional case. 

An example will now be presented using this method.  A 5x5 rectangular array with 

uniform spacing of 4/λ  is used.  The results are compared to the performance of an 

array with a linear phase taper, as discussed in Section 3.2.  The array is scanned to 

)0 ,90(),( °°=dd φθ .  The magnitude of the array factor is plotted in Figure 31.  The 

maximum sidelobe level is -12.04 dB.  The beamwidth selected for determining the 

optimal weights is identical to the result for the linear phase taper array for comparison.  

Hence, °=∆ 7.682/θ  and °=∆ 2.382/φ .    
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Figure 31.  |AF| for phase-tapered weights; (a) elevation plot, (b) azimuth plot. 

 The following parameters are defined that indicate the boundary of the suppression 

region in the ),( yx kk  plane: 
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Increasing θ for a fixed azimuth angle is equivalent to moving outward in the radial 

direction in the ),( yx kk  plane.  Increasing φ  for a fixed elevation angle is equivalent to 

moving in a circle (at a fixed distance from the origin) in the ),( yx kk  plane.  
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Consequently, the suppression region Θ  has the form plotted in Figure 32 for this 

example. 

 

Figure 32.  Suppression region for an array scanned away from broadside. 

Employing the method of Section 6.3 with the suppression region in Figure 32, the 

optimal weights can be determined, and they are listed along with their respective 

positions in Table XIX.  The sidelobe level is reduced to -31.2 dB, showing the 

superiority of this method over the linear phase-taper method.  The array factor using the 

optimal weights is plotted, along with the array factor using the phase-tapered weights, in 

Figure 33 for an azimuth scan with a fixed elevation angle ( °= 90θ ).  The elevation scan 

is plotted in Figure 34 with a fixed azimuth angle ( °= 0φ ). 
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TABLE XIX 
OPTIMAL WEIGHTS WITH ASSOCIATED POSITIONS 

Position Weight Position Weight 
(-0.5, 0.5) °∠246103.0  (0, -0.25) °∠288020.0  
(-0.5, 0.25) °∠31192.0  (0, -0.5) °∠355166.0  

(-0.5, 0) °∠227227.0  (0.25, 0.5) °∠235126.0  
(-0.5, -0.25) °∠22204.0  (0.25, 0.25) °∠133179.0  
(-0.5, -0.5) °∠234090.0  (0.25, 0) °∠256291.0  
(-0.25, 0.5) °∠118184.0  (0.25, -0.25) °∠142211.0  
(-0.25, 0.25) °∠246182.0  (0.25, -0.5) °∠244108.0  

(-0.25, 0) °∠246182.0  (0.5, 0.5) °∠126066.0  
(-0.25, -0.25) °∠221180.0  (0.5, 0.25) °∠346174.0  
(-0.25, -0.5) °∠113137.0  (0.5, 0) °∠143196.0  

(0, 0.5) °∠350210.0  (0.5, -0.25) °∠350185.0  
(0, 0.25) °∠168067.0  (0.5, -0.5) °∠137060.0  

(0, 0) °∠4418.0    
 

 

 

Figure 33.  Azimuth plot of array factors with optimal and phase-tapered weights. 
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Figure 34.  Elevation plot of array factors with optimal and phase-tapered weights. 

7.5.   Symmetric Arrays of Omnidirectional Elements 
 

In this section, the antennas are omnidirectional, so that 

1),( =yx kkf .                                                   (7.12) 

The array elements are allowed to assume an arbitrary geometry, subject to the arrays 

being symmetric, as in (7.2) and (7.3).  The goal of this section is to determine the 

geometry that, accompanied with the optimum weights of Section 7.2, yield the minimum 

sidelobe level.  The positions will be varied using the PSO algorithm as in Chapter 6 in 

order to determine an optimal geometry for minimum sidelobes.  The parameters and 

method of implementation used are the same as in Chapter 6. 

The algorithm is again run with P particles.  The particles move around and interact 

via the PSO algorithm.  As the element positions are varied, the optimum weights are 
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calculated for each particle (or array) at every iteration.  Consequently, the weights and 

the array geometry are simultaneously optimized.  The number of particles is increased 

until successive runs of the algorithm return identical results.  Because the algorithm 

starts with random and independent particles (or arrays) every time, and because the 

algorithm consistently returns identical solutions, it is likely that the results are globally 

optimal.   

Two cases are considered in this section.  In Case 1, the beamwidth will be °60 ; 

this indicates the sidelobes are to be suppressed when °≥ 30θ .  The cutoff value can be 

calculated to be 

 
λ
π

λ
π

=°= )30sin(
2

1ck .                                             (7.13) 

For Case 2, a smaller beamwidth of °30  is considered.  The sidelobes will therefore be 

suppressed when °≥ 15θ .  The cutoff value is then 

λ
π

λ
π 518.0

)15sin(
2

2 =°=ck .                                      (7.14) 

For symmetric arrays, there exists no optimal 2 or 3 element symmetric arrays, as 

the symmetry forces the arrays to be linear.  A linear array cannot suppress sidelobes in 

two dimensions because the pattern of a linear array is only a function of one variable.  

Results will be presented for arrays of size N=4-7. 

The number of particles required for regular convergence is given in Table XX, 

along with the average simulation time.  The simulations were performed on a 3.0 GHz 

processor running MATLAB.   
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TABLE XX 
NUMBER OF REQUIRED PARTICLES FOR PSO AND COMPUTATION TIME FOR 

N=4-7 
N P Time (hours) 
4 290 3 
5 300 3.5 
6 800 7 
7 1000 10 

 
 

The optimal arrays for Case 1 are plotted in Figure 35.  For N=4, 5, 7, the optimal 

arrays are close to being circular with an increasingly large radius, and a center element if 

the array has an odd number of elements.  The result for N=6 is distinct, as it takes a 

cross shape.  The optimal array when N=7 is also a hexagonal array, as discussed in 

Section 5.6. 

The optimal positions are listed with the sidelobe levels in Table XXI.  The 

corresponding optimal weights are given in Table XXII.  In Figure 36, the magnitude of 

the array factor is plotted as a function of the elevation angle θ  for several azimuth 

angles.  The mainbeam is almost identical within the transition region ( °≤ 30θ ) for 

distinct azimuth angles.  This indicates a circularly symmetric mainbeam, as expected 

with a circular suppression region. 
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Figure 35.  Optimal symmetric array locations for Case 1 (dimensions in λ ). 
 

 
 

TABLE XXI 
OPTIMAL SLL AND POSITIONS FOR CASE 1 (DIMENSIONS IN λ ) 

 ),( 11 yx  ),( 22 yx  ),( 33 yx  ),( 44 yx  SLL (dB) 
N=4 (0.45, 0) (0, 0.52)   -5.5 
N=5 (0, 0) (0.67, 0) (0, 0.67)  -6.9 
N=6 (0.41, 0) (1.24, 0) (0, 0.67)  -7.9 
N=7 (0, 0) (0.77, 0) (0.39, 0.67) (-0.39, 0.67) -13.9 
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TABLE XXII 
OPTIMAL WEIGHTS FOR CASE 1 

 1w  2w  3w  4w  

N=4 0.556 0.444   
N=5 0.268 0.183 0.183  
N=6 0.442 0.159 0.400  
N=7 0.200 0.133 0.133 0.133 

 
 

 
Figure 36.  Magnitude of )(θT  at distinct azimuthal angles (Case 1), N=7. 

 
The optimal arrays for Case 2 are plotted in Figure 37.  The positions and sidelobe 

levels for this case are presented in Table XXIII.  The optimal weights are listed in Table 

XXIV.  The arrays for this case are similar to the results for Case 1 except they are 

spread out farther, which is expected for a narrower mainbeam.  The results for N=6 

differ significantly between the two cases, indicating that the results can have significant 

variance depending on the beamwidth.  The results for Case 2 for N=6 and N=7 are 

almost identical, the difference being the center element.  Note that the addition of this 
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element only lowers the sidelobe level by 0.1 dB.  This information would be 

advantageous to an array designer in determining the number of elements needed to 

achieve a sidelobe level.  The extra complexity introduced by adding a seventh element 

in this case would not be very beneficial.  The magnitude of the array factor at distinct 

azimuthal angles is plotted in Figure 38 for the N=7 array.  The mainbeam is again 

identical when °≤ 15θ  for distinct azimuth angles, indicating a circular mainbeam. 

 

 

Figure 37.  Optimal symmetric array locations for Case 2 (dimensions in λ ). 
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TABLE XXIII 
OPTIMAL SLL AND POSITIONS FOR CASE 2 (DIMENSIONS IN λ ) 

 ),( 11 yx  ),( 22 yx  ),( 33 yx  ),( 44 yx  SLL (dB) 
N=4 (0.49, 0) (0, 0.70)   -1.9 
N=5 (0, 0) (0.79, 0) (0, 0.79)  -3.2 
N=6 (0.92, 0) (0.46, 0.80) (-0.46, 0.80)  -5.7 
N=7 (0, 0) (0.92, 0) (0.46, 0.80) (-0.46, 0.80) -5.8 

 
 

TABLE XXIV 
OPTIMAL WEIGHTS FOR CASE 2 

 1w  2w  3w  4w  

N=4 0.661 0.339   
N=5 0.268 0.183 0.183  
N=6 0.442 0.159 0.400  
N=7 0.200 0.133 0.133 0.133 

 
 

 
Figure 38.  Magnitude of )(θT  at distinct azimuthal angles (Case 2), N=7. 
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7.6.   Symmetric Arrays of Patch Antennas 
 

In this section, symmetric arrays of patch antennas steered to 0=dθ  are 

considered.  The method of solution is identical to that in Section 7.3.  When a microstrip 

or patch antenna has a thin dielectric, the far field components of the electric field are 

approximately given by (7.15) and (7.16), when the polar angle 2/πθ ≤  [91].  For 

2/πθ > , which is the region below the patch, the radiated fields will assumed to be zero.  

In (7.9-7.10), k is the free-space wavenumber, W is the width of the patch, and L is the 

length of the patch.   
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The normalized pattern to be used for ),( φθf  as in (7.1) will be 
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In this section, the patch dimensions are chosen to be W=L=0.5λ .  The directivity 

for this antenna can be numerically calculated to be 9.34 dB.  The patch pattern is plotted 

in Figure 39 for two fixed azimuth angles.  The pattern here is complicated enough that it 

is highly unlikely that an analytical weighting method can be developed that minimizes 

the sidelobes in an patch array.  However, using the development of Section 7.2, adding 

http://www.antenna-theory.com/antennas/patches/antenna.php
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the pattern does not significantly increase the difficulty of determining the optimal 

weights.  Using a realistic, complicated antenna pattern helps to highlight the utility of 

the LP method of weight selection. 

 
(a)  °= 0φ   

 
(b)  °= 90φ  

 
  Figure 39.   Magnitude of patch pattern (in dB).  

 
The two cases discussed in Section 7.3 are again considered here.  Using the 

solution method discussed previously, the optimal arrays for Case 1 (beamwidth equal to 

°60 ) are presented in Figure 40.  The optimal arrays of patch antennas are skewed 
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somewhat owing to the non-isotropy of the antenna pattern.  The results for N=4, 5 and 7 

are fairly similar to the Case 1 results of omnidirectional elements; however they are 

slightly rotated and more spread out.  The arrays are more spread out (or elongated) 

because the array factor effectively has a narrower main-beamwidth (due to the patch 

pattern which decreases in magnitude for °> 0θ ).  The narrower mainbeam leads to 

more spread out arrays, as seen in Case 2 of Section 7.3.  The result for N=6 is a 

significant departure from the omnidirectional case, which indicates that the antenna 

pattern must be taken into account in determining an optimal geometry.   

The positions and optimal sidelobe levels for Case 1 of patch elements are listed in 

Table XXV.  The corresponding optimal weights are listed in Table XXVI.  The 

magnitude of the radiation pattern is plotted in Figure 41 as a function of θ  for three 

distinct azimuth angles for the N=7 array.  The directivity of this array is evaluated 

numerically to be 17.67 dB.   
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Figure 40.  Optimal symmetric patch array locations for Case 1 (units of λ ). 

 
TABLE XXV 

OPTIMAL SLL AND POSITIONS FOR CASE 1 OF PATCH ELEMENTS (UNITS OF
λ ) 

 ),( 11 yx  ),( 22 yx  ),( 33 yx  ),( 44 yx  SLL (dB) 
N=4 (0.46,-0.42) (0.49, 0.42)   -12.5 
N=5 (0.00, 0.00) (0.61, -0.57) (0.65, .53)  -13.1 
N=6 (0.34, 0.68) (-0.32, .69) (.54, -.01)  -16.6 
N=7 (0.00, 0.00) (0.50, 0.74) (0.85, -.04) (.37, -.77) -21.5 
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TABLE XXVI 
OPTIMAL WEIGHTS FOR CASE 1 WITH PATCH ELEMENTS 

 1w  2w  3w  4w  

N=4 0.256 0.244   
N=5 0.233 0.193 0.191  
N=6 0.133 0.133 0.234  
N=7 0.218 0.124 0.132 0.135 

 
 

 
Figure 41.  Magnitude of )(θT  at distinct azimuth angles (Case 1), N=7 (patch). 

 
Next, Case 2 (beamwidth equal to °30 ) is considered with patch elements.  The 

optimal arrays are plotted in Figure 42.  The arrays for this case are fairly similar to the 

results of Case 1, except for again being spread out farther.  The result for N=6 is more 

symmetric and less football shaped, while the result for N=7 is again a hexagonally 

sampled array. 
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The optimal positions along with the sidelobe levels are listed in Table XXVII.  The 

sidelobe level increased on average by 7.5 dB when compared to Case 1 of Section 7.4.  

The optimal weights are given in Table XXVIII.  The magnitude of the radiation pattern 

is plotted as a function of θ  for distinct azimuth angles in Figure 43 for the N=7 array.  

The directivity of this array is evaluated numerically to be 17.72 dB.   

 

 
 

Figure 42.  Optimal symmetric patch array locations for Case 2 (units of λ ). 
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TABLE XXVII 
OPTIMAL SLL AND POSITIONS FOR CASE 2 OF PATCH ELEMENTS (UNITS OF 

λ ) 

 ),( 11 yx  ),( 22 yx  ),( 33 yx  ),( 44 yx  SLL (dB) 
N=4 (0.64, 0.61) (0.77, -0.61)   -5.7 
N=5 (0.00, 0.00) (1.27, -0.11) (0.11, 1.12)  -7.5 
N=6 (1.05, 0.05) (0.58, -0.94) (0.51, 0.99)  -9.6 
N=7 (0.00, 0.00) (0.60, -1.02) (0.63, 1.01) (1.20, -0.01) -10.7 

 
 

TABLE XXVIII 
OPTIMAL WEIGHTS FOR CASE 2 WITH PATCH ELEMENTS 

 1w  2w  3w  4w  

N=4 0.272 0.228   
N=5 0.194 0.184 0.219  
N=6 0.178 0.163 0.159  
N=7 0.061 0.163 0.161 0.145 

 
 

 
Figure 43.  Magnitude of )(θT  at distinct azimuth angles (Case 2), N=7 (patch). 
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7.7.   Wideband Weighting Method 

The previous efforts have been focused on optimizing an antenna array for 

minimizing sidelobes at a single frequency.  In practice, arrays transmit and receive 

information over a range of frequencies, generally centered about some carrier frequency.  

An array that has low sidelobes at a given frequency is not guaranteed to have low 

sidelobes at other frequencies within the band the array is operating in.  In this section, a 

method of choosing weights that yield the minimum sidelobes over a range of 

frequencies is developed.   

The minimum sidelobe level in a wideband array is written as 
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where again Θ  is the region in which the sidelobes are to be suppressed.  It will be 

assumed that the sidelobes are to be suppressed within a continuous frequency range, and 

in the region given by cθθ ≥  for all frequencies.  This interval will be written as 
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where UL ff < .   

The weighting method used in Section 7.3 could be extended such that every 

constraint is duplicated at every frequency; this was the method proposed in [92].  

However, to do so, particularly for 2D arrays or for very wideband arrays, would add an 

intractable number of constraints.  While this would be technically correct, the 

optimization would often be computationally intractable.  Hence, a more efficient method 

is developed. 
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it follows that 

U
i

i
λ

λ )(Θ=Θ ,                                                   (7.21) 

where the union is over all wavelengths within [ LU λλ  , ].   

For the wideband case, the total radiation pattern is written as the product of the 

element pattern and the array factor, 

),,,(),,(),,,( λλλ yxyxyx kkAFkkfkkT dw,dw, = .                    (7.22) 

The two-dimensional array factor is rewritten from (2.21) with the wavevector definitions 

in (2.7) as 
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),,( dw, .                           (7.23) 

Equation (7.23) indicates that the array factor does not depend on λ  when xk  and yk  are 

specified.   

This is not true for the element pattern, ),,( λyx kkf , which in general will not be 

independent of λ  when xk  and yk  are specified.  This can be seen from the patch 

element pattern of Section 7.3 given in (7.15-7.17), which cannot be written as only a 

function of two variables.   

Most antennas will exhibit a notable change in radiation pattern over the band of 

operation.  In this case, the variation of the antenna pattern with frequency should be 
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taken into account.  To accomplish this, an auxiliary antenna pattern, ),( yx kkH  is 

defined as 

),,(
],[

max),( λ
λλλ

yx

LU

yx kkfkkH
∈

= .                           (7.24) 

This auxiliary antenna pattern is the maximum value of the antenna pattern evaluated at 

),( yx kk  over the frequency range of interest.  Note that the maximum in (7.24) is taken 

only over the frequency range for which ),( yx kk  is in the visible region.  For instance, at 

the value )0 ,/2(),( Uyx kk λπ= , the only frequency that has this value in the visible 

region is Uff = .  For the narrowband or single frequency case, the auxiliary antenna 

pattern reduces to the antenna pattern at the frequency of interest. 

Using (7.22) and (7.24), it follows that 

|),,(|),(|),,,(| yxyxyx kkAFkkHkkT dw,dw, ≤λ .                     (7.25) 

Hence, the total radiation pattern as a function of frequency can be minimized by 

minimizing the right hand side of (7.19), which is only a function of xk  and yk .  The 

minimization is performed over the region specified in (7.21).  Letting 

 
L

c
cLk λ

θπ sin2
= ,                                                (7.26) 

the suppression region for the wideband case can be illustrated graphically, as shown in 

Figure 44.  The wideband case is equivalent to minimizing the sidelobes in the ),( yx kk  

plane beginning at the cutoff value for the lowest frequency )( cLk , and extending the 

region to the largest wavenumber in the visible region at the highest frequency )/2( Uλπ . 
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Figure 44.  Suppression region for two-dimensional arrays over a frequency band. 

Writing 

),,(),,(),( yxyxyx kkGkkAFkkH dw,dw, = ,                     (7.27) 

the single-frequency sidelobe minimizing optimization problem of (7.5) is rewritten for 

the wideband case in (7.28). 
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Dw,                         (7.28) 

In (7.22), the R samples are sampled over the suppression region illustrated in Figure 44.  

The solution to (7.22) yields weights that produce the minimum sidelobe level over the 

frequency band of interest. 
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When the antenna elements do not have significantly different radiation patterns 

over the frequency band of interest, the radiation pattern can be approximated,  

),,(),,( ji ff λφθλφθ ≈ ,                                          (7.29) 

for all ji λλ ,  within the frequency band.  For this case, determining the wideband weights 

is as simple as extending the suppression region as in Figure 37 and using the procedure 

of Section 7.2.   

7.8.   Optimal Wideband Arrays of Omnidirectional Antennas 

In this section, the arrays are optimized to determine the minimum sidelobe level 

over a range of frequencies.  The frequency range will be specified by the fractional 

bandwidth (FBW),  
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=
−

=
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= ,                               (7.30) 

where cf  is the center frequency.  Fractional bandwidths are considered wideband when 

0.2<FBW<0.5, and are considered ultra-wideband when 5.0≥FBW  [93].  In this 

section, an ultra-wideband case is considered in which FBW=0.50.  The antenna elements 

are omnidirectional and independent of frequency over the frequency range of interest, so 

that  

1),,( =λφθf .                                                   (7.31) 

When the antenna’s radiation pattern is independent of frequency over the bandwidth of 

interest, the antennas are referred to as frequency independent.  Hence, the optimization 

in this section will focus on the array factor, which is equivalent to the total radiation 

http://www.antenna-theory.com/basics/bandwidth.php
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pattern for this case.  For comparison with the results of Section 7.4, the beamwidth will 

be °60 , so that the sidelobes will be suppressed when °≥ 30θ  for all frequencies. 

The optimization procedures that were applied in the previous sections of this 

chapter are again sufficient for the problem at hand.  The resulting optimal arrays are 

found for N=4-7 and are presented in Figure 45.  Note that the results are now given in 

units of cc fc /=λ .  The optimal positions are also tabulated in Table XXIX.  The 

corresponding optimal weights are listed in Table XXX. 

 
 

Figure 45.  Optimal symmetric array locations for FBW=0.5 (units of cλ ). 
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TABLE XXIX 

OPTIMAL SLL AND POSITIONS FOR OMNIDIRECTIONAL ELEMENTS (UNITS 
OF cλ , FBW=0.5) 

 ),( 11 yx  ),( 22 yx  ),( 33 yx  ),( 44 yx  SLL (dB) 
N=4 (0.51, 0) (0, 0.39)   -2.4 
N=5 (0.0, 0.0) (0.44, -.44) (0.44, 0.44)  -3.9 
N=6 (0.65, 0.0) (0.33, 0.56) (-0.33, 0.56)  -6.0 
N=7 (0.0, 0.0) (0.71, 0) (0.36, .61) (-.36, 0.61) -7.2 

 
 

TABLE XXX 
OPTIMAL WEIGHTS FOR OMNIDIRECTIONAL ELEMENTS (FBW=0.5) 

 1w  2w  3w  4w  

N=4 0.189 0.311   
N=5 0.183 0.204 0.204  
N=6 0.169 0.169 0.169  
N=7 0.043 0.160 0.160 0.160 

 
 

The results are interesting when compared with the narrowband results of Section 

7.4.  The SLL increased on average of 3.6 dB when the array is designed to perform in 

this ultra-wideband situation.  The arrays are slightly less spread out as in the narrowband 

case.  The result for N=6 is a circular array in the wideband case, whereas it was a cross 

shape for the narrowband case.  In addition, in extending the array from narrowband to 

ultra-wideband, the SLL increased by only 1.9 dB for N=6.  This is not a large penalty in 

SLL for greatly extending the bandwidth.  However, the SLL increase was 6.7 dB for 

N=7, which is relatively large.   

The total radiation pattern for the optimal array of size N=7 is now presented.  

Since it is now a function of frequency, the pattern will be plotted as a function of θ  for 

distinct azimuth angles at the lower frequency ( Lf , given in Figure 46), the center 
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frequency ( cf , given in Figure 47), and the upper frequency ( Uf , given in Figure 48).  

Note that the beamwidth varies depending on the frequency.  However, for all 

frequencies in the range of interest, the beamwidth is less than °60  and the sidelobes 

never rise above the SLL (-7.2 dB) in the suppression region, as desired. 

 

 
Figure 46.  Magnitude of )(θT  at distinct azimuth angles (N=7) for Lff = . 
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Figure 47.  Magnitude of )(θT  at distinct azimuth angles (N=7) for cff = . 
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Figure 48.  Magnitude of )(θT  at distinct azimuth angles (N=7) for Uff = . 
 

7.9.   Optimal Wideband Arrays of Patch Antennas 

In this section, wideband arrays of patch antennas are examined.  The bandwidth is 

selected to be FBW=0.2, which is much smaller than the ultra-wideband case of Section 

7.7 but still wideband enough that the narrowband assumption is not valid.  Patch 

antennas have radiation patterns that vary significantly with frequency, but can be made 

to have a wider bandwidth using various methods including adding slits [94] or adding a 

U-slot to the patch [95].    The beamwidth will again be °60  for comparison with the 

results of Section 7.5. 

The normalized field patterns for the patch, given in (7.9-7.11) will now be 

rewritten as a function of frequency in (7.32-7.33).  
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The normalized pattern to be used for ),( φθf  as in (7.1) will be 
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The implicit assumption in (7.32-7.34) is that 0E  is approximately constant over the 

frequency range of interest.   
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The PSO algorithm is again applied to determine the optimal positions.  The 

resulting optimal arrays are found for N=4-7 and are presented in Figure 49.  The results 

are again given in units of cc fc /=λ .  The optimal positions are also tabulated in Table 

XXXI.  The corresponding optimal weights are listed in Table XXXII. 

 
 

Figure 49.  Optimal symmetric patch array locations for FBW=0.2 (units of Cλ ). 

The arrays are similar to the narrowband case of patch elements with the same 

bandwidth given in Figure 33.  The seven element array is again approximately 
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hexagonal, which has been a recurring theme throughout this work.  The arrays for this 

case appear to be spread out further than the narrowband case, when measured in units of 

the center wavelength.   

On average, the SLL increased by 1.9 dB in order to guarantee the sidelobe level 

over the frequency range of operation.  The N=5 element array exhibited the lowest rise 

in sidelobes (only 1.1 dB) by extending the bandwidth of the array.  The N=7 element 

array exhibited the highest rise in sidelobes (3.0 dB) in order to extend the bandwidth. 

 
TABLE XXXI 

OPTIMAL SLL AND POSITIONS FOR PATCH ELMENTS (UNITS OF cλ , 
FBW=0.2) 

 ),( 11 yx  ),( 22 yx  ),( 33 yx  ),( 44 yx  SLL (dB) 
N=4 (0.53, 0.00) (.01, -0.87)   -10.8 
N=5 (0.0, 0.0) (0.99, 0.07) (-0.10, 0.84)  -12.0 
N=6 (0.56, 0.30) (0.50, -0.49) (0.11, 0.90)  -14.7 
N=7 (0.0, 0.0) (0.45, -0.76) (0.49, 0.75) (0.91, -0.01) -18.5 

 
 

TABLE XXXII 
OPTIMAL WEIGHTS FOR PATCH ELEMENTS (FBW=0.2) 

 1w  2w  3w  4w  

N=4 0.320 0.180   
N=5 0.268 0.169 0.197  
N=6 0.215 0.185 0.100  
N=7 0.188 0.142 0.136 0.128 

 

Finally, the total radiation patterns for the optimal N=7 arrays are again plotted at 

the lower, center and upper frequencies for fixed elevation angles.  The radiation pattern 

at the lower frequency ( Lff = ) is plotted in Figure 50, the center frequency ( cff = ) 

radiation pattern is given in Figure 51, and the upper frequency ( Uff = ) radiation 
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pattern is plotted in Figure 52.  As seen in the ultra-wideband case, the beamwidth again 

varies depending on the frequency.  However, the variance is less pronounced in this case 

because of the lower fractional bandwidth considered. 

 
Figure 50.  Magnitude of )(θT  at distinct azimuth angles (N=7) for Lff = . 
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Figure 51.  Magnitude of )(θT  at distinct azimuth angles (N=7) for cff = . 
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Figure 52.  Magnitude of )(θT  at distinct azimuth angles (N=7) for Uff = . 

 
7.10.   Conclusions 
 

The sidelobe minimization technique was extended from 1D to 2D in this chapter.  

It was seen that the optimal geometry varies depending on the beamwidth and antenna 

elements used in the array.   

The arrays were then studied over a wide frequency range.  Optimal weights were 

derived that minimize the sidelobe level over a range of frequencies.  The optimal 

geometries and weights were found to vary with the fractional bandwidth used by the 

array.  Hence, if an array is used over a frequency range, the narrowband optimization 

technique will not be optimal.  

The PSO method was again effective in optimizing the array geometry.  This 

optimization technique has proven to work well for a wide variety of problems.  In 
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addition, the method lends itself well to be employed using parallel processing, which 

can significantly speed up computation time. 

 



 

VIII.  SUMMARY, CONCLUSIONS, AND FUTURE WORK 

8.1.   Summary and Conclusions 

The primary goal of this dissertation has been to show the effect of an array’s 

geometry on metrics of interest.  These metrics include sidelobe level, interference-

rejection and SINR.  Because of the difficulty in analyzing an array’s geometry, the 

geometry is often chosen to be a standard geometry in practice.  However, this work has 

shown that gain in performance can be achieved via suitable optimization of the array 

geometry. 

The secondary goal has been to improve upon existing weight-selection strategies 

via convex optimization.  The relatively new field of convex optimization will likely be a 

tremendously effective tool as it makes its way into the antenna field. 

In Chapter 5, improving the performance of an adaptive array was considered.  

Because of the wide range of environments in which these arrays operate, the concept of 

an interference environment was introduced.  In this manner, the performance can be 

optimized on average over the likely scenarios in which the array is to perform.  This was 

a necessary development, as optimizing over a specific situation would not have been 

extremely useful for an adaptive array.  The interference-suppression capability of 

adaptive arrays was shown to vary with geometry, and consequently, the optimization of 

the geometry was of interest.  It was shown that the interference allowed through the 

spatial-filter (that is the antenna array) can be lowered by varying the geometry.  In 

addition, this lowering of interference power was then shown to often translate into gains 

in overall SINR, a critical parameter in wireless communication. 
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 Sidelobe level was shown to be critical in WCDMA systems in [87].  In Chapter 6, 

the process of determining the minimum possible SLL in a linear array was developed.  

Sidelobe-minimizing weights were derived that can be efficiently computed for any 

linear geometry, beamwidth, scan angle, and antenna type.  The Dolph-Chebyshev 

sidelobe-minimizing weighting method was derived in 1946 [21] and has been used 

extensively since its publication.  The derivation of the weights presented in Chapter 6 

was a significant expansion of the capabilities of that method.  The total radiation pattern 

depends on both the weights, positions and elements in the array.  Since the optimal 

weights can be found for any array geometry and any antenna type, the only variables 

remaining were the array positions.  The PSO algorithm was employed to determine 

optimal positions, that along with the optimal weights, determined the optimal sidelobe 

levels for linear arrays of size N=2-7.  Results were presented for linear arrays steered to 

broadside and °45 , and for two different beamwidths.  In addition, arrays of 

omnidirectional elements and short dipoles were examined to show the effect of the 

antenna’s radiation pattern on the optimal geometry, weights and sidelobe level. 

In Chapter 7, the optimal sidelobe level for 2D or planar arrays was considered.  

The methods for minimizing sidelobes in linear arrays were extended to the planar case.  

Optimal symmetric planar arrays of size N=4-7 were found for two beamwidths, and for 

arrays with either omnidirectional or patch antenna elements.  In addition, a method of 

minimizing sidelobes in wideband planar arrays was developed.  Sidelobe minimizing 

weights were derived that suppress the sidelobes over a range of frequencies, instead of at 

a single frequency as is done in the narrowband case.  This weighting method is valid for 
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arbitrary bandwidths, beamwidths, antenna types, and planar array geometries.  The 

positions were optimized simultaneously with the weights to determine optimal sidelobe 

levels for wideband arrays.  Results were presented for an ultra-wideband case of 

omnidirectional elements, and for a wideband case of patch antenna elements. 

Throughout this work, the hexagonal array has been a recurring optimal two-

dimensional array.  For interference suppression, the optimal 7-element array was a 

closely spaced hexagonal array.  For sidelobe suppression in the planar case, the 

hexagonal array arose as the solution for distinct element types and beamwidths.  Hence, 

when using an array with a number of elements that fits well with the hexagonal 

structure, it is likely that this geometry would be a good starting point.   

As the traffic in wireless communication increases, every variable that can be 

exploited to improve performance will be optimized.  Since the demand for higher data 

rates and reliability for a given bandwidth continues to grow exponentially, it is likely 

array geometry optimization will be employed in real systems. 

8.2. Future Work 

There is no shortage of applications in which array geometry optimization would 

prove useful.  The obvious next steps would be to continue the work of this dissertation 

for arrays with a larger number of elements.  The minimum sidelobe-producing antenna 

arrays for one and two dimensions could be studied for increasing number of elements to 

determine the characteristics of the optimal arrays as the number of elements becomes 

large.  The same extensions could be done to the interference-suppressing adaptive 

arrays. 
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Another topic of interest would be to optimize the weights and geometries of 

antennas consisting of non-identical elements.  Antenna array analysis is almost 

exclusively performed with identical elements, and it would be interesting to observe if 

gains could be made by exploiting elements with different radiation patterns. 

Another interesting practical problem would be to minimize cross-polarization in 

antenna arrays while holding a certain criteria constant (SLL, MSE, etc.).  This problem 

could likely be solved in a similar manner to the solution methods of Chapters 6 and 7.  

Implementing precise weights can sometimes be difficult in actual systems.  Hence, 

deriving an optimization problem that returns weights from a discrete set of allowable 

weights would be advantageous.  Then optimizing over the positions to determine an 

optimal geometry for the discretized weights could be performed.  

The geometry-optimization in this work has focused on translating the elements.  

For non-omnidirectional elements, the array could be optimized by allowing the elements 

to rotate or be put at an angle relative to the other elements.  This would add new degrees 

of freedom to each element, which could translate to potentially large gains in 

performance.   

On the theoretical side, optimization methods for proving an array’s geometry is 

globally optimal would be of value.  This has not been done due to the mathematical 

intractability of the problem (many locally optimal points).  However, as the field of 

optimization expands, it is possible that a clever technique could be developed to verify 

that an array is globally optimal. 
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Finally, in digital communications, the bit error rate (BER) for a given data rate is 

the definitive measure of performance for a wireless communication system.  Hence, 

more general modeling methods that ultimately minimize the BER would be valuable.  

However, because of the large and complex nature of wireless communication systems, 

this would not be an easy task.
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