

Optimizing the E-Business Suite with Real Application Clusters (RAC)

Ahmed Alomari Performance Specialist aalomari@cybernoor.com

Agenda

- Interconnect
- Concurrent Manager
- TNS Configuration
- Load Balancing
- Parallel Execution
- RAC Tuning
- Q & A

 Ensure the topology of the Private Interconnect delivers high bandwidth & low latency.

Options

- > Ethernet
 - Gigabit Network Interfaces with an Interconnect switch
 - Typically UDP protocol is used.
- >InfiniBand (IB)
 - IPolB
 - Transparent to TCP/IP applications
 - IB/RDS
 - Reliable Datagram Sockets
 - More efficient than UDP (offload driver)
 - Supported on Linux platforms via 10.2.0.3

Tune the relevant network buffer sizes

- > Linux
 - net.core.rmem_default = 262144
 - net.core.rmem_max = 262144
 - net.core.wmem_default = 262144
 - net.core.wmem_max = 262144
- > Solaris
 - ndd -set /dev/udp udp_xmit_hiwat 65536
 - ndd -set /dev/udp udp_recv_hiwat 65536

- Enable Jumbo Frames
 - >Increase MTU to ~9000
 - Minimizes number of packets needed to transfer data blocks.
 - Since Oracle Applications 11i requires an 8K block size, jumbo frames reduces the number of packets overall.

```
$ /sbin/ifconfig bond1
bond1 Link encap:Ethernet HWaddr 00:1E:4A:06:4E:8A
. . . . . .
UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
$ ifconfig bond1 mtu 9000
```


- CE based interfaces (Sun/Solaris)
 - > Disable the Task based queue.
 - > Improves latency by using interrupt based model.

```
/etc/system file:
set ce:ce_taskq_disable=1
```


- Monitor the Interconnect latency via ping to ensure optimal latencies.
 - > Use an 8K ping packet size

```
{racnode1}-> ping racnode4-priv -s 8192 -c 10
PING racnode4-priv (10.10.21.8) 8192(8220) bytes of data.
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=0 ttl=64 time=0.585 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=1 ttl=64 time=0.595 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=2 ttl=64 time=0.567 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=3 ttl=64 time=0.585 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=4 ttl=64 time=0.607 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=5 ttl=64 time=0.598 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=6 ttl=64 time=0.402 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=6 ttl=64 time=0.424 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=8 ttl=64 time=0.509 ms
8200 bytes from racnode4-priv (10.10.21.8): icmp_seq=8 ttl=64 time=0.509 ms
```


 Monitor the Interconnect latency via traceroute to ensure a single hop between RAC nodes.

```
{racnode1}-> traceroute racnode4-priv
traceroute to racnode4-priv (10.10.21.8), 30 hops max, 46 byte packets
1 racnode4-priv (10.10.21.8) 0.252 ms 0.185 ms 0.241 ms
```


 Monitor the Interconnect network traffic via sar or netstat

```
{racnode1}-> sar -n DEV 1 10 | grep eth4
```

11:09:57	PM	IFACE	rxpck/s	txpck/s	rxbyt/s	txbyt/s	rxcmp/s	txcmp/s	rxmcst/s
11:09:58	PM	eth4	15.15	11.11	3082.83	1380.81	0.00	0.00	0.00
11:09:59	PM	eth4	16.33	6.12	2425.51	1204.08	0.00	0.00	0.00
11:10:00	PM	eth4	20.41	12.24	2340.82	9327.55	0.00	0.00	0.00
11:10:01	PM	eth4	19.39	5.10	2677.55	880.61	0.00	0.00	0.00
11:10:02	PM	eth4	86.60	77.32	9876.29	8917.53	0.00	0.00	0.00
11:10:03	PM	eth4	348.98	311.22	74861.22	47782.65	0.00	0.00	0.00
11:10:04	PM	eth4	24.49	18.37	2917.35	2867.35	0.00	0.00	0.00
11:10:05	PM	eth4	39.80	17.35	4618.37	10250.00	0.00	0.00	0.00
11:10:06	PM	eth4	38.38	20.20	4565.66	2574.75	0.00	0.00	0.00
11:10:07	PM	eth4	121.65	112.37	34390.72	16051.55	0.00	0.00	0.00
Average:		eth4	72.96	58.98	14138.27	10102.24	0.00	0.00	0.00

Observed Latencies

# Nodes	Traffic Rate (MB/sec)	RAC Interconnect Latency (ms)
2	13	10-12
2	5	2-3
4	6	5-7
6	5	3-4

- When you observe continuously high latencies, ensure the private Interconnect is being used rather than the public network.
 - > 10g: query gv\$cluster_interconnects
 - > oradebug ipc

```
racnodel-> sqlplus "/ as sysdba"

SQL> oradebug setmypid
Statement processed.

SQL> oradebug ipc
Information written to trace file.

SQL> exit
```

SSKGXPT 0.66a20d0 flags SSKGXPT_READPENDING

socket no 7

IP 10.10.18.4 UDP 35993

 Monitor RAC Traffic via Grid Control Database target (Performance tab) or AWR Report (RAC Section)

RAC Statistics

	Per Second	Per Transaction
Global Cache blocks received:	1,014.99	11.81
Global Cache blocks served:	650.74	7.57
GCS/GES messages received:	7,425.04	86.40
GCS/GES messages sent:	10,644.57	123.86
DBWR Fusion writes:	12.00	0.14
Estd Interconnect traffic (KB)	16,855.09	

- Utilize Parallel Concurrent Processing (PCP) to leverage the Cluster.
 - Environment variable APPLDCP=ON (context variable s_appldcp)
 - Configure Multiple Concurrent Manager Instances
 - Each CM Instance points to a specific DB instance (in the RAC Cluster).
 - Set s_cp_twotask to the respective DB instance TNS entry on each CM Instance.
 - TWO_TASK is then set correctly on each CM Instance.

Parallel Concurrent Processing (PCP)

- Parallel Concurrent Processing (PCP)
 - > Each CM Instance points to a specific DB instance (in the RAC Cluster).
 - Certain Interfaces such as the Transaction Managers and the Planning Manager utilize DB Pipes which requires these programs to be collocated.
 - Do not use a load balanced TNS entry for the value of s_cp_twotask.
 - The request may hang if the sessions are load balanced. Worker 1 connected to DB Instance 1 places a message in the pipe, and expects Worker 2 (which is connected to DB Instance 2) to consume the message. However, Worker 2 never gets the message since pipes are instance private.

- Transaction Managers
 - > TMs use Pipes by default
 - > ATG RUP3 (4334965) or higher provides an option to use AQs in place of Pipes.
 - Profile "Concurrent:TM Transport Type"
 - Can be set to PIPE or QUEUE
 - Pipes are more efficient but require a Transaction Manager to be running on each DB Instance.

- Employ Application affinity for concurrent manager jobs to minimize Interconnect traffic and maximize the performance of the concurrent request.
 - Order Import request runs on Standard Manager1 which connects to DB Node1
 - Workflow Background Engine which processes Order related Item types (OEOH and OEOL) should also be scheduled on DB Node 1 to avoid having to ship the OM related blocks to another node.

Example: Application Affinity

- Application Affinity
 - Use Specialization Rules via Inclusion/Exclusion at the Application level to implement affinity.
 - Organize jobs first by Application, and then by dependency based on your knowledge of the Application usage.
 - > Example:
 - Order Import (Order Management)
 - Pick Release (Inventory)
 - Since one of the first major items of work of Pick release is to fetch the "pickable" order lines, co-locating Pick Release with Order Import or Sales Order Creation minimizes Interconnect traffic.

- Workflow Background Engines (FNDWFBG)
 - Specify Item Type in order to minimize contention as well as RAC traffic
 - Example:
 - Process Order related Item types (OEOH and OEOL) on DB Instance 1
 - Process Service Request related item type (SERVEREQ) on DB Instance 2
 - Make sure you have the fix for RDBMS bug 4519477 applied in your environment when specifying the Item Type. The fix is included in 9.2.0.8 and 10.2.0.2.

- Tune the number of target processes per queue as well as the sleep time to avoid excessive lookups against fnd_concurrent_requests
- If the bulk of the system waits involve GC related waits on fnd_concurrent_requests and this time is a significant percentage of the overall DB time (i.e. > 10%), then the number of target processes and manager sleep times need to be revisited.
- Use a dedicated queue for short requests.

TNS Configuration

TNS Configuration

- Use Services in place of port/host/sid.
 - > Increases availability
 - Leverages Server side load balancing
- Use VIP in the listener.ora and tnsnames.ora.
 - Improves failover time
 - Avoids long waits upon failover due to physical host TCP timeouts

TNS Configuration

Use VIP in the listener.ora and tnsnames.ora

```
Listener.ora:
EBIZ_proddb3 =
  (DESCRIPTION_LIST =
    (DESCRIPTION =
      (ADDRESS LIST =
         (ADDRESS = (PROTOCOL = TCP) (HOST = proddb3-vip) (PORT = 8521) (IP = FIRST)))
      (ADDRESS_LIST =
         (ADDRESS = (PROTOCOL = TCP) (HOST = proddb3) (PORT = 8521) (IP = FIRST)))
      (ADDRESS_LIST =
        (ADDRESS = (PROTOCOL = IPC) (KEY = EXTPROCEBIZ3)))
tnsnames.ora:
EBIZ=
         (DESCRIPTION=
                 (ADDRESS=(PROTOCOL=tcp) (HOST=proddb3-vip) (PORT=8521))
             (CONNECT_DATA=
                 (SERVICE_NAME=EBIZ)
                 (INSTANCE_NAME=EBIZ3)
            ))
```


- Application Affinity Mode
 - > Application Tiers connect to specific DB Instances
 - Context variables s_tools_twotask and s_weboh_twotask reference a TNS entry which points to a particular service.

- Application Affinity Mode
 - Application Tiers can also connect to specific DB Instances via profiles:
 - Applications Database ID
 - Name of DBC file to be used for the Web Applications.
 - Database Instance
 - TNS entry to be used for Forms connections.

- Application Affinity Mode
 - Application Affinity can also be implemented at a higher level via the Agent related profiles.
 - Application Framework Agent
 - Applications JSP Agent
 - Apps Servlet Agent
 - Applications Web Agent
 - In this mode, the profiles can be set at the Application or Responsibility level to point to a specific set of webtiers which then directly connect to specific Application/Responsibility specific services.

- Application Affinity Mode
 - Reduces RAC traffic caused by load balancing sessions across the Cluster.
 - Shared pool utilization is specific to the modules being used per instance.
 - In the load balancing scenario, more PL/SQL packages and cursors need to be loaded since all the code being used is being executed on all instances.
 - Increases manual maintenance of profiles and Application/Responsibility mapping.

- Load Balanced Mode
 - Utilizes Server Side Load balancing via the init.ora parameters local_listener and remote_listener.
 - AutoConfig generates the load balanced TNS entries as follows:

Load Balanced Mode – AutoConfig entries

```
EBIZ 806 BALANCE=
    (DESCRIPTION LIST=
         (DESCRIPTION=
                 (ADDRESS=(PROTOCOL=tcp) (HOST=proddb1-vip) (PORT=8521))
             (CONNECT DATA=
                 (SERVICE NAME=EBIZ)
                 (INSTANCE NAME=EBIZ1)))
         (DESCRIPTION=
                 (ADDRESS=(PROTOCOL=tcp) (HOST=proddb2-vip) (PORT=8521))
             (CONNECT DATA=
                 (SERVICE_NAME=EBIZ)
                 (INSTANCE NAME=EBIZ2))))
APPS_JDBC_URL=jdbc:oracle:thin:@
              (DESCRIPTION=(LOAD_BALANCE=YES) (FAILOVER=YES)
              (ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)
               (HOST=proddb1-vip) (PORT=8521)) (ADDRESS=(PROTOCOL=tcp)
               (HOST=proddb2-vip) (PORT=8521)) (ADDRESS=(PROTOCOL=tcp)
               (HOST=proddb5-vip) (PORT=8521)) (ADDRESS=(PROTOCOL=tcp)
               (HOST=proddb3-vip) (PORT=8521)) (ADDRESS=(PROTOCOL=tcp)
               (HOST=proddb4-vip) (PORT=8521))) (CONNECT_DATA=(SERVICE_NAME=EBIZ)))
```

- Load Balanced Mode AutoConfig entries
 - TWO_TASK on the Application tier hosts is set to the _806_BALANCE entry such as EBIZ_806_BALANCE.
 - The _806_BALANCE entry uses the old 806 Client side load balancing which results in connection skew.
 - Edit the Forms startup script (\$COMMON_TOP/admin/scripts/\$CONTEXT_NAME/ adfrmctl.sh) and add an entry for TWO_TASK
 - TWO_TASK=EBIZ_BALANCE
 - This allows Forms connections to utilize server side load balancing and minimize the connection skew.
 - Web based Java Applications correctly utilize server side load balancing via the _BALANCE TNS entry.

Parallel Execution

- Ensure PX requests do not span instances
 - > Set the init.ora parameters instance_groups and parallel_instance_group on each instance.
 - Example:
 - Instance 1:
 - instance_groups=EBIZ1
 - parallel_instance_group=EBIZ1
 - Instance 2:
 - instance_groups=EBIZ2
 - parallel_instance_group=EBIZ2

- Prior to 10g, queries against GV\$ views utilize the same slave set pool configured by parallel_max_servers
 - GV\$ queries being executed by monitoring tools or adhoc queries can result in an Applications job which utilizes PX to be executed in serial due to the unavailability of slaves.
- In 10g, PZXX processes are used to execute GV\$ queries.
 - > ora_pz99_EBIZ1
 - ora_pz98_EBIZ1

- Minimize the use of ad-hoc GV\$ queries.
- For ad-hoc queries, connect to the relevant instance if analyzing or debugging a specific issue involving a particular instance and use V\$ views rather than GV\$ views via a remote session.

- Consider jobs which utilize PX when configuring Concurrent Managers and assigning such jobs to the relevant queues:
 - > TAP
 - > Gather Statistics
 - > DBI Collections and MV Refresh
 - > TCA Bulk Customer Import
 - Workflow Directory Services Bulk Sync

- Ensure the Ims and Igwr processes are running in the real-time (RT) OS class.
 - > priocntl (Solaris)
 - > renice (Linux)
- Use automatic segment management (ASSM) along with uniform extent sizes (e.g. 4 MB extent size) for tablespaces containing large transaction tables/indexes.
 - > Helps avoid frequent space management operations.
 - > Ensure fix for 4074953 is present.

- Tune sequence cache sizes for hot sequences (e.g. 1,000 or higher) in order to minimize index key contention for the Apps surrogate keys.
 - Avoid ordered sequences for frequently used custom sequences.
- Upgrade to 10gR2
 - Row CR Optimization improves performance of Apps batch jobs
- Disable NUMA optimization
 - > _enable_NUMA_optimization=FALSE
 - > _db_block_numa=1

- Use Broadcast on Commit Scheme
 - > 9iR2: max_commit_propagation_delay=0
 - > 10gR2: Default SCN propogation scheme
 - _immediate_commit_propagation = TRUE
 - _lm_global_posts = TRUE
- Disable Dynamic Resource Mastering (DRM) if Application Affinity mode is being used.
 - > _gc_affinity_time=0
 - _gc_undo_affinity=FALSE

 DRM overhead can be significant in object flush case.

truncate table FII.FII_GL_JE_SUMMARY_B

call	count	cpu	elapsed	disk	query	current	rows
Parse	1	0.09	0.13	6	119	0	0
Execute	1	603.55	2431.49	19382	455048	797740	0
Fetch	0	0.00	0.00	0	0	0	0
							·
total	2	603.64	2431.63	19388	455167	797740	0

Elapsed times include waiting on following events:

	Event waited on	Times	Max. Wait	Total Waited
		Waited	0	0
	row cache lock	144404	1.47	110.81
	lms flush message acks	144487	0.49	1715.65
	log file switch completion	3	0.08	0.12
	gc current grant busy	131	0.03	1.34
•	log file switch completion	3	0.08	0.12

- Monitor top SQLs via AWR or Statspack
- Full table scans are more expensive in RAC mode than in single instance mode.

```
Rows Row Source Operation

1 SORT AGGREGATE (cr=276208 pr=10961 pw=0 time=65979778 us)

3012266 TABLE ACCESS FULL MTL_SYSTEM_ITEMS_B (cr=276208 pr=10961 pw=0 time=63258586 us)
```

Elapsed times include waiting on following events:

Event waited on	Times	Max. Wait	Total Waited
	Waited		
SQL*Net message to client	2	0.00	0.00
gc current block 2-way	20564	0.00	8.44
gc cr multi block request	68722	0.00	14.00
db file parallel read	558	0.03	3.78
db file sequential read	5184	0.06	25.00
db file scattered read	1321	0.06	5.88

 Review Top SQL sections of the AWR Report including the Cluster Wait section.

SQL ordered by Cluster Wait Time

Cluster Wait Time (s)	CWT % of Elapsd Time	Elapsed Time(s)	CPU Time(s)	Executio ns	SQL Id	SQL Module	SQL Text
52,890.30	88.69	59,632.80	4,885.70	1,482	3w60vwv0by	pa.finplan.server.FpEditPla nAM	INSERT INTO PJI_FP_AGGR_PJP1_T
42,416.77	88.49	47,932.87	4,016.97	90	2rbzdkvnh2f sf	pa.finplan.server.FpEditPla nAM	begin PA_BUDGET_WF.BASELINE_B U
39,276.61	77.22	50,863.74	8,664.80	12,663	8wtrwq1u27 uyy	fnd.wf.worklist.server.Workli stAM	begin WF_ENGINE.CB(:p1, :p2,
38,917.70	77.24	50,387.31	8,568.91	477	<u>q9vtq505945</u> <u>3v</u>	fnd.wf.worklist.server.Workli stAM	BEGIN wf_notification.respond(
33,183.38	82.08	40,428.79	4,546.48	466	<u>b0s14b4v6nj</u> <u>p6</u>	imc.ocong.root.server.lmcR ootAM	begin hz_party_search.find_par

Relevant OpenWorld Sessions

- S290717 Customer Case Studies: Best Practices for Tuning Oracle E-Business Suite, Wednesday 11/14/2007 9:45 AM - 10:45 AM, Moscone West 2014 -L2
- S290918 Applications Database Optimization Panel, Thursday 11/15/2007 11:30 AM - 12:30 PM, Marriott Golden Gate B2

AppsPerf Event

- An annual forum dedicated to Applications Performance Tuning and Best Practices
- AppsPerf 2008 A full day event with 14 advanced sessions.

Visit www.appsperf.com for more information including registration details.

Q & A

Thank You for Attending.

