
Journal of Automata, Languages and Combinatorics u (v) w, x–y
c© Otto-von-Guericke-Universität Magdeburg

NP PREDICATES COMPUTABLE IN THE WEAKEST
LEVEL OF THE GRZEGORCZYCK HIERARCHY

Cristian Grozea

Faculty of Mathematics and Computer Science, Bucharest University,
Str. Academiei 14, R-70109 Bucharest, Romania.

e-mail: chrisg@phobos.ro

ABSTRACT

Let (Er)r∈N be the hierarchy of Grzegorczyk. Its weakest level, E0 is indeed quite
weak, as it doesn’t even contains functions such as max(x, y) or x+y. In this paper we
show that SAT ∈ E0 by developing a technique which can be used to show the same
result holds for other NP problems. Using this technique, we are able to show that also
the Hamiltonian Cycle Problem is solvable in E0.

Keywords: Grzegorczyk hierarchy, subrecursion classes, SAT, NP

1. Introduction and Notation

Why should a computer scientist be interested in the Grzegorczyk Hierarchy today?
Because there are still open problems related to the lower levels of this hierarchy. Even
more, solving some of these problems may lead to solutions to other open problems
in complexity theory. For example, if one can prove that the following inclusion is
strict: E0∗ ⊆ E2∗, then the Linear Time Hierarchy LTH is properly contained in
LINSPACE, as LTH ⊆ E0∗ and LINSPACE = E2∗.

We shall follow the notation in Rose [8] and denote by q(x, y) the arithmetical
quotient of the integer division of x by y, by r(x, y) the remainder of the integer
division of x by y, by d(x) the length of the binary representation of x and by D(x, y) =
2d(x)∗d(y) the smash function.

Let (Er)r∈N be the Grzegorczyk hierarchy, and let Pf be the set of the polynomial-
time computable functions. We denote by C∗ the subset of the Boolean-valued func-
tions in the function set C. Also (Pf)∗ = P.

Note that Pf contains the smash function D, which is not in E2, as it is not
polynomially bounded. Therefore Pf 6⊆ E2.

It was already known that E2 6⊆ Pf , provided P 6= NP (Book[2, theorem 1]).
We shall prove a much stronger assertion, namely

E0 6⊆ Pf , provided P 6= NP.

This leads us to the conclusion that E0 and Pf are not comparable and hence Pf

is not somewhere between E0 and E3.

2 C. Grozea

In this paper, we show that the satisfiability problem of Cook (SAT), which is
known to be NP -complete, can be solved in E0, so we will be able to show explicitly
a function in E0, which is not in Pf .

Added in proof: We have just learned that More and Olivier [6] have obtained a
similar result with an indirect proof.

1.1. Recursion

The function f is defined by primitive recursion from g and h if f(0,
→
y) = g(

→
y) and

f(x + 1,
→
y) = h(x,

→
y , f(x,

→
y)).

The function f is defined by limited recursion from g,h,F if f is defined by primitive
recursion from g and h and, additionally f(x,

→
y) ≤ F(x,

→
y), for all x and

→
y .

Let E0 be the class of (primitive recursive) functions whose initial functions are
the zero function, the successor function, and which is closed under composition and
limited recursion. By E1 we denote the class of (primitive recursive) functions whose
initial functions are the zero function, the successor function, the addition function
x + y, and which is closed under composition and limited recursion; E1 is the closure
of E0 under addition. Formally, E2 is the class of (primitive recursive) functions whose
initial functions are the zero function, the successor function, x + y and x ∗ y, and
which is closed under composition and limited recursion; E2 is the closure of E1 under
multiplication.

It is known that E2 consists of the linear-space computable functions (Ritchie [7],
see also Rose [8]), and that Pf has this recursive characterization (Cobham [3], see
also Rose [8]): The polynomial-time computable functions are exactly those functions
obtained from the initial functions 0, projections, the binary constructors (s0(x) = 2∗x
and s1(x) = 2∗x+1) and the smash function (D(x, y) = 2d(x)∗d(y)), using composition
and bounded recursion on notation (binary recursion).

1.2. Logical operation and the least number operator µ

We say that the predicate P is computed (represented) by the function fP if P(x) is
true if and only if fP (x) = 0.

We shall consider the (bounded) quantifiers ∀t ≤ x,P(t) and ∃t ≤ x,P(t) and the
(bounded) least number operator µ :

µ(t ≤ x)[P(x)] =

{
0, if P(t) 6= 0,∀t ≤ x,

t0, if P(t0) = 0, t0 ≤ x, (∀t < t0,P(t) 6= 0).

1.3. Properties of low Grzegorczyk classes

Here are some properties of low Grzegorczyk classes E0, E1, E2 (for proofs see Rose
[8]):

(i) x
.
− y ∈ E0.

(ii) The logical operations can be represented in E0 (including the bounded quanti-
fiers).

NP Predicates Computable in the Weakest Level of the Grzegorczyck Hierarchy 3

(iii) The least number operator µ can be defined in E0.
(iv) Each function in E2 has a polynomial upper bound.
(v) E0 ⊂ E1 ⊂ E2.

2. Low Grzegorczyk Classes and Pf

The class Pf contains the smash function D, which is not in E2, as it is not bounded
by polynomials. Therefore Pf 6⊆ E2 and subsequently Pf 6⊆ E0, Pf 6⊆ E1.

We also show here that the other inclusions are false, that is :

E0 6⊆ Pf (1)

(from this immediately follows that E1 6⊆ Pf and E2 6⊆ Pf).
To prove (1) is enough to find a function that is not in Pf , but is in E0.
Let us consider the satisfiability problem (SAT), the problem that requires to decide

for a given Boolean formula in CNF (conjunctive normal form) whether there exist
Boolean values for the variables in the formula such that the formula evaluates to the
value true. SAT is known to be NP -complete, so there is a function in Pf for solving
it if and only if P = NP .

We shall start here our construction proving that SAT can be solved by a function
in E0. We will use packed arrays to encode the Boolean formula as a sequence of
fixed-length binary representation symbols.

Definition 1 For a fixed symbol-length k, (k ≥ 1) a packed array is a natural
number a ∈ N, such that the least significant k bits of a codify the symbol at index 0,
the next k bits codify the symbol at index 1, and so on.

Example 1 Let a be the array containing the numbers 3, 7, 4, 5: a[0] = 3, a[1] = 7,
a[2] = 4, a[3] = 5.

When we pack this array using 3 bits per symbol we get this natural number:
101100111011 = 101 100 111 011 (in binary notation, split for more clarity; note
the reverse order: the last group is the number a[0] = 3, the one before the last one is
the number a[1] = 7 and so on).

When we pack this array using 4 bits per symbol we get this natural number:
0101010001110011 = 0101 0100 0111 0011 (in binary notation, split for more clarity).

But this number could represent a different array when interpreted as being packed
using 3 bits per symbol: 0101010001110011 = 0 101 010 001 110 011 which is the
array containing the numbers 3, 6, 1, 2, 5.

The packed representation together with the chosen symbol length fully defines an
array.

A problem might arise when the number 0 is stored in the most significant bits.
We shall avoid this problem by using 1-based codes for symbols. In this way, for
a properly encoded array, it will be easy to determine the array length (using the
function ArrayLength, defined below).

4 C. Grozea

Lemma 2 The following functions are in E0:

(i) the length d(x), the remainder r(x, y).

(ii) arrays (indexed memory) access function GetAt, defined below.

Proof. All the functions defined below are in E0 : not(x) = 1
.
− x, le(x, y) = not(x

.
−

y), or(x, y) = not((1
.
− x)

.
− y), and(x, y) = not(or(not(x),not(y))), impl(x, y) =

or(not(x), y), equal(x, y) = and(le(x, y), le(y, x)), diff(x, y) = not(equal(x, y)).
The bounded if function bif is defined as follows: if bool is true, then it returns

thenval otherwise it returns elseval, provided both values are bounded by bound :
bif(bool, thenval, elseval, bound) = (µt ≤ bound)[and(

impl(bool, equal(t, thenval)),
impl(not(bool), equal(t, elseval))) = 1].

The remainder function r:
r(0, y) = 0,

r(x + 1, y) = bif(diff(r(x, y), y
.
− 1), r(x, y) + 1, 0, y),

r(x, y) ≤ x.

The characteristic function for addition:
sum(x, y, z) = and(equal(z

.
− x, y), equal(z

.
− y, x)).

The function DIV2 divides x by 2 (integer division):
DIV2(x) = (µt ≤ x)[or(sum(t, t, x), sum(t, t, x

.
− 1)) = 1].

The function SHR shifts right a number y by a number of positions x:
SHR(y, 0) = y,

SHR(y, x + 1) = DIV2(SHR(y, x)),
SHR(y, x) ≤ y.

The length function: d(x) = (µt ≤ x)[SHR(x, t) = 0].

Now we are ready to introduce the array functions:
GetAt(array, mask, 0) = r(array, mask);
GetAt(array, mask, pos + 1) = GetAt(SHR(array,d(mask)

.
− 1),mask, pos).

GetAt(array, mask, pos) ≤ array.

Here a supplementary argument is used, mask. On call, mask = 2k, where k is
the symbol length, expressed in bits. Note that we get the mask as an input, we are
not computing it.

The pair (array, mask) completely defines an array in this representation.

This function returns the length of an array:
ArrayLength(array, mask) = (µt ≤ array)[GetAt(array, mask, t) = 0].

This function can be used to access the bits of the number word:
GetBit(word, pos) = GetAt(word, 2, pos). 2

NP Predicates Computable in the Weakest Level of the Grzegorczyck Hierarchy 5

We need a good encoding in order to ensure the polynomial size encoding of the
Boolean formula (polynomial in the size of the Boolean formula). Otherwise, for some
disastrous representation of the formula, it might be possible for a polynomial time
algorithm to solve the satisfiability problem (SAT).

Theorem 3 The satisfiability problem (SAT) is solvable in E0.

Proof. We will use the arrays defined above to construct a good representation for
the Boolean formulas in CNF (conjunctive normal form).

We shall represent any CNF Boolean formula as a string of symbols, each symbol
being:

(i) ’+’ (or), codified by 1, or
(ii) ’*’ (and), codified by 2, or
(iii) ’-’ (not), codified by 3, or
(iv) a variable index i, codified by the symbol 4 + i.

We choose for the representation of the CNF Boolean formula the postfix (Polish)
notation. So, for example, the formula (x0+x1)∗(−x2+x1) will be represented by the
array containing these symbols: 4, 5, 1, 6, 3, 5, 1, 2 and the natural number which rep-
resents this array for k = 3 (and therefore mask = 8) is 010001101011110001101100
(in binary notation).

In order to check whether a given Boolean CNF formula is satisfiable or not, we
will evaluate the formula for all possible values of the variables. Each possible as-
signment of binary values to the variables can be represented by a natural number
assignment ≤ 2n − 1, whose bits are the values of the n variables. Note that we
shall not compute this value (2n− 1), it will be given as part of the description of the
formula (see the discussion below).

We shall use below the function:
EvalVar(index, assignment) = GetBit(assignment, index).
If we have the formula, and the maximum assignment to be tested, simply test all

the assignments, evaluating the Boolean formula for each assignment. If any of the
assignments validates the formula, then the formula is satisfiable, otherwise it is not
validable.

This is the function for deciding SAT:

Validable(formula,mask,maxassignment)
= (∃ assignment ≤ maxassignment)(Eval(formula,mask, assignment) = 1).

(2)

The function must be called with maxassignment = 2n−1, where n is the number
of variables in the formula.

We shall work under the reasonable assumption that each variable is represented
(has at least one occurrence) in the formula. Note that any SAT instance can be
converted to this form in polynomial time, so this form is not weaker than the general
case. For the instances of SAT of this form, we can simply take maxassignment =

6 C. Grozea

formula. Some more work is done by the Validable function, but we do not care
about time complexity in E0, which is rather a space-limited, not a time-limited class
of functions.

In order to complete the proof of the theorem (3), we must give the expression of
the function Eval, used in the equation (2) for evaluating the Boolean formula in a
given assignment.

This single loop program below evaluates a formula, represented as an array, in a
Polish notation, given some assignment of values to variables. The lines below which
begin with the mark // are comments and are not part of the program.

//inputs: formula, mask, assignment
conjvalue = 1;
disjvalue = 0;
varvalue = 0;
for(i = 0;i<ArrayLength(formula,mask);i++)
{
// 3 is our code for the negation

if(GetAt(formula,mask,i) == 3)
then varvalue = NOT varvalue;

// 1 is our code for the operation OR
else if(GetAt(formula,mask,i) == 1)

then disjvalue = disjvalue OR varvalue;
// 2 is our code for the operation AND

else if(GetAt(formula,mask,i) == 2)
then conjvalue = conjvalue AND disjvalue;disjvalue = 0;

// every code greater than 3 specify a variable index
else varvalue = EvalVar(GetAt(formula,mask,i)-4, assignment);

}
return conjvalue;

Here are some explanations about the small program above.
There are three important variables. The accumulator conjvalue stores the result

of the partial evaluation of the conjunction (and its initial value is 1, the neutral
element for the AND operation). The accumulator disjvalue stores the result if the
partial evaluation of the current disjunction; at the beginning and whenever a new
disjunction starts it is set to 0, the neutral element for OR. The variable varvalue
stores the value of the last variable evaluated. After a negation it contains the negated
value of the last variable evaluated.

The program interprets the string of symbols in the given context (assignment of
values to variables). Each symbol is considered, and an action is performed accord-
ingly: if the symbol denotes a variable, the variable’s value is stored in varvalue. If
the symbol denotes negation, that value is negated. If it denotes disjunction, the value
stored in varvalue is OR-ed to disjvalue. And, finally, if it denotes conjunction then
the value stored in in disjvalue is AND-ed to conjvalue. In the end, the value of the
variable conjvalue stores the result of the evaluation of the boolean CNF formula.

NP Predicates Computable in the Weakest Level of the Grzegorczyck Hierarchy 7

Let the function computed by the program above be

Eval(formula,mask, assignment)

We will prove that this function is in E0.
We start by defining several auxiliary functions, every one of which is in E0, being

defined from functions already in E0 and using only constructions allowed in E0, such
as the least number operator µ, the composition and the bounded recursion.

The function Encode packs three bits x, y and z into a natural number zyx
between 0 and 7.

Encode(x, y, z) = (µt ≤ 7)[and(equal(GetBit(t, 0), x),
and(equal(GetBit(t, 1), y), equal(GetBit(t, 2), z))) = 1]

The next three functions unpack a natural number between 0 and 7 in its three
component bits.

GetVarVal(encvar) = GetBit(encvar,0)

GetDisVal(encvar) = GetBit(encvar,1)

GetConVal(encvar) = GetBit(encvar,2)

The function EvalVar returns the value of one of the formula’s variables in the
given assignment (environment).

EvalVar(index,assignment) = GetBit(assignment,index)

The function if :

if(bool,thenval,elseval) = bif(bool,thenval,elseval,1)

The next three functions compute the new values of the variables varvalue,
conjvalue, disjvalue of the program above, after executing one iteration of the pro-
gram.

VarVal(encvar,sym,assignment) =
if(le(sym,3),

if(equal(sym,3), not(GetVarVal(encvar))
, GetVarVal(encvar))

,EvalVar(sym-4,assignment))

ConVal(encvar,sym) =
if(equal(sym,1),

and(GetConVal(encvar),GetDisVal(encvar))
,GetConVal(encvar))

DisVal(encvar,sym) =
if(diff(sym,1),

8 C. Grozea

if(equal(sym,2),
or(GetVarVal(encvar),GetDisVal(encvar))
,GetDisVal(encvar))

,0)

This function corresponds to the execution of one iteration step of the program
above, in the presence of the current formula symbol sym, which can be either a
variable or an operator code.

IterationStep(encvar,sym,assignment) =
Encode(

VarVal(encvar,sym,assignment)
,DisVal(encvar,sym)
,ConVal(encvar,sym))

The function EvalAux(formula,mask, assignment, n) runs the above iteration n
steps and returns the packed number containing the values of the program variables
varvalue, disjvalue, conjvalue. The first rule establishes the initial values of those
variables.

EvalAux(formula,mask,assignment,0) = Encode(0,0,1)

EvalAux(formula,mask,assignment,i+1) =
IterationStep(EvalAux(formula,mask,assignment,i),
GetAt(formula, mask,i), assignment)

Note that EvalAux(...) is bounded by the constant function 7, so it is defined by
bounded recursion.

Finally, here is the definition of the function Eval that mimics the whole program
behavior; it simply runs the iteration for each symbol of the formula to be evaluated
and returns in the final the value of the variable conjvalue.

Eval(formula, mask, assignment) =
GetConVal(EvalAux(formula, mask, assignment,

ArrayLength(formula, mask)))

This concludes the proof of the theorem 3. 2

If P 6= NP , the function Validable (2) cannot be in Pf , while V alidable ∈ E0. The
key point is that the value maxassignment it needs to decide SAT has polynomial
length and our Boolean formula has polynomial length representation.

So we have explicitly constructed a function that is in E0, but not in Pf . Actually,
the function Validable is binary valued, so it is in E0∗ but not in P .

This result leads us to the conclusion that E0 and Pf are not comparable (with
respect to set theoretic inclusion).

NP Predicates Computable in the Weakest Level of the Grzegorczyck Hierarchy 9

3. Future Research. The Relation between NP and E0

We shall proof here, using the same technique, that another NP-complete decision
problem, the Hamiltonian cycle problem is also in E0 (we assume that the Hamiltonian
cycle problem is known to the reader). This leads to the following question.

Question 4 Is the whole NP included in E0∗?

As far as we know, this question is open for the moment.

Theorem 5 The Hamiltonian cycle problem is solvable in E0.

Proof. In order to derive a solution to this problem in E0 we shall choose first a
convenient encoding for the instances of this problem.

We shall rely on all the functions constructed for the SAT problem.
Let G be the non-directed graph, n the vertexes count, E the edges set.
We shall represent each number between 1 and n on k bits (pick the smallest k

usable). As before, there is an associated number mask = 2k−1.
What should be mentioned is that in E0 many things can be done, as long as a big

number is provided.
This big number we shall note here BN and it must have this property: it must

be greater than any other number that occurs in the computations below.
We shall use for passing the edges of the graph the adjacency matrix A. We

shall encode this matrix as a packed array with element size of k bits, this way:
A[conc(i, j, mask, BN)] = ai,j , for all i, j = 1, 2, . . . n, where ai,j = 1 iff (i, j) ∈ E(G)
and ai,j = 2 otherwise. Please note that we are using the values 1 and 2 instead of
the usual 1 and 0.

The function conc concatenates the binary representations of the first two argu-
ments:

conc(i, j, mask, BN) = µw ≤ BN [GetAt(w,mask, 0) = j
AND GetAt(w,mask, 1) = i

AND (w SHR (d(mask)
.
− 1))) SHR (d(mask)

.
− 1) = 0

].

The next function tests the edge (i, j) existence.
edge(i, j, A,mask,BN) = GetAt(A,mask, conc(i, j, mask, BN)).

We shall encode a path (chain) as a sequence of n numbers between 1 and n, and
those sequences shall be encoded as packed arrays.

The next function tests if the path L is really a valid path and a cycle in the graph.
cycle(L, n, A, mask, BN) =
L ≤ BN
AND ∀i ≤ BN, 1 = impl(i > n, GetAt(L, mask, i) = 0)
AND ∀1 ≤ i ≤ n, GetAt(L, mask, i) ≥ 1 AND GetAt(L, mask, i) ≤ n

AND ∀1 ≤ i ≤ n
.
− 1, edge(GetAt(L, mask, i), GetAt(L, mask, s(i)), A, mask, BN) = 1

AND edge(GetAt(L, mask, n), GetAt(L, mask, 1), A, mask, BN) = 1.

10 C. Grozea

The next function tests if the path L is a Hamiltonian cycle in the graph.
hamiltcycle(L, n, A,mask,BN) = cycle(L, n, A,mask,BN)
AND ∀1 ≤ i ≤ n,∃1 ≤ p ≤ n, GetAt(L,mask, p) = i.

Finally, this is the function for testing if a given graph is Hamiltonian.
hamiltgraphaux(n, A,mask,BN) =
∃L ≤ BN,hamiltcycle(L, n, A,mask,BN).

And now the discussion about the big number BN . We observe that the packed
array A encoding the edges has at least k ∗ (n2 − 1) bits and is bigger than any other
value occurring in the computation of the functions above.

Therefore we can take BN = A:
hamiltgraph(n, A,mask) = hamiltgraphaux(n, A,mask,A)
As this is a predicate and all the functions derived above, including hamiltgraph,

are in E0, this concludes the proof that the Hamiltonian cycle problem can be solved
in E0∗. 2

Acknowledgements

The author thanks Philip G. Drazin and H.E. Rose from Bristol University, UK and
C.S. Calude from Auckland University, NZ.

References

[1] S.J. Bellantoni, K.H. Niggl, Ranking primitive recursions: the low Grze-
gorczyk classes revisited, SIAM Journal on Computing, volume 29, number 2,
p.401-415, 1999.

[2] R.V. Book, On languages accepted in polynomial time, SIAM Journal on Com-
puting, volume 1, p.281-287, 1972.

[3] A. Cobham, The intrinsic computational difficulty of functions, Logic, Metho-
dology and Philosophy of Science, ed. Y. Bar-Hillel, North-Holland, p. 24-30,
1965.

[4] C. Calude, Super-exponentials non-primitive recursive, but rudimentary, In-
form. Process. Lett. 25 (1987), 311-315.

[5] C. Calude, Theories of Computational Complexity, North-Holland, Amster-
dam, 1988.

[6] M. More, F. Olive, Rudimentary languages and second-order logic, Mathe-
matical Logic Quarterly, volume 43, p. 419-426, 1997.

[7] R.W. Ritchie, Classes of predictably computable functions, Transactions of the
American Mathematical Society, volume 106, p.139-173, 1963

[8] H.E. Rose, Subrecursion - Functions and Hierarchies, Clarendon Press - Oxford,
1984.

