
PIC Assembly Language for the

Complete Beginner

Michael A. Covington

Artificial Intelligence Center

The University of Georgia

Athens, Georgia 30602-7415

http://www.ai.uga.edu/mc

This article appeared in Electronics Now Magazine in 1999 and is
reprinted here by permission. Some web addresses have been up-
dated but the content has not; you will find that MPLAB, for instance,
now looks somewhat different.

You may print out this article for personal use but not for further pub-
lication.

Copyright c© 1999 Gernsback Publications, Inc.
Copyright c© 1999, 2004 Michael A. Covington.

These days, the field of electronics is divided into “haves” and “have-

nots” – people who can program microcontrollers and people who can’t.

If you’re one of the “have-nots,” this article is for you.

1

Microcontrollers are one-chip computers designed to control other equip-

ment, and almost all electronic equipment now uses them. The average

American home now contains about 100 computers, almost all of which

are microcontrollers hidden within appliances, clocks, thermostats, and

even automobile engines.

Although some microcontrollers can be programmed in C or BASIC,

you need assembly language to get the best results with the least expensive

micros. The reason is that assembly language lets you specify the exact

instructions that the CPU will follow; you can control exactly how much

time and memory each step of the program will take. On a tiny computer,

this can be important. What’s more, if you’re not already an experienced

programmer, you may well find that assembly language is simpler than

BASIC or C. In many ways it’s more like designing a circuit than writing

software.

The trouble with assembly language is that it’s different for each kind

of CPU. There’s one assembly language for Pentiums, another for PIC mi-

crocontrollers, still another for Motorola 68000s, and so forth. There are

even slight differences from one model of PIC to another. And that leads

to a serious problem – each assembly-language manual seems to assume

that you already know the assembly language for some other processor!

So as you look from one manual to another in puzzlement, there’s no way

to get started.

That’s the problem this article will address. I won’t teach you all of

PIC assembly language, just enough to get you started. For concreteness,

I’ll use just one processor, the PIC16F84. To be very precise, I’ll use the

2

PIC16F84-04P, which operates up to 4 MHz and is housed in a plastic DIP

package.1 This is a product of Microchip, Inc. (Chandler, Arizona), and it’s

closely related to the rest of the PIC family – which, however, I’ll ignore to

prevent confusion.

To do the experiments described in this article, you’ll need one or more

PIC16F84-04P chips; we strongly recommend having more than one so

you can rule out a damaged PIC if your circuit doesn’t work. You’ll also

need the other parts for the circuits you want to build (see the schematics).

And you’ll need a PC-compatible personal computer, the MPASM assem-

bler software (which you can download from http://www.microchip.com),

and a PIC programmer such as Ramsey Electronics’ “PICPRO-1” or the

NOPPP programmer published in this magazine, September 1998, and

described at http://www.covingtoninnovations.com/noppp. The PIC16F8X

data sheet, actually a 122-page manual, will also come in handy; it’s called

PIC16F8X because it covers both PIC16F84 and PIC14F83, and you can

download it or request a printed copy from Microchip.

1 PART 1 - MEET THE PIC

1.1 What’s inside a PIC?

Figure 1 shows the pinout of the PIC16F84, and Figure 2 shows the most

important parts inside. The PIC is a tiny but complete computer. It has a

CPU (central processing unit), program memory (PROM), working mem-

1Note added 2004: The 10-MHz version is now more common and will work in all the
same circuits.

3

1

2

3

4

5

6

18

17

16

15

14

13

A2

A3

A4

MCLR

GND

B0
 B7

V+

O2

O1

A0

A1

12

11

10

7

8

9

B1

B2

B3
 B4

B5

B6

PIC16F84

Figure 1: Pinout of PIC16F84.

ory (RAM), and two input-output ports.

The CPU is, of course, the “brain” of the computer. It reads and exe-

cutes instructions from the program memory. As it does so, it can store and

retrieve data in working memory (RAM). Some CPUs make a distinction

between “registers” located within the CPU and “RAM” located outside

it; the PIC doesn’t, and its general-purpose working RAM is also known

as “file registers.” On the ’F84, there are 68 bytes of general-purpose RAM,

located at addresses hex 0C to hex 4F.

Besides the general-purpose memory, there is a special “working regis-

ter” or “W register” where the CPU holds the data it’s working on. There

are also several special-function registers each of which controls the oper-

4

ation of the PIC in some way.

The program memory of the ’F84 consists of flash EPROM; it can be

recorded and erased electrically, and it retains its contents when pow-

ered off. Many other PICs require ultraviolet light for erasure and are not

erasable if you buy the cheaper version without the quartz window. The

’F84, however, is always erasable and reprogrammable.

There are two input-output ports, port A and port B, and each pin of

each port can be set individually as an input or an output. The bits of

each port are numbered, starting at 0. In output mode, bit 4 of port A has

an open collector (or rather open drain); the rest of the outputs are regular

CMOS. (Working with microcontrollers, you have to remember details like

this; there’s no programming language or operating system to hide the

details of the hardware from you.) The CPU treats each port as one 8-bit

byte of data even though only five bits of port A are actually brought out

as pins of the IC.

W REGISTER

O1
 O2
 14
-
BIT BUS

8
-
BIT BUS

B0

SPECIAL

FUNCTION

REGISTERS

PROGRAM

MEMORY

(FLASH EPROM)

FILE

REGISTERS

(RAM)

CPU
CLOCK

OSCILLATOR

PORT B

B1
B2
B3
B4
B5
B6
B7
A0
A1
A2
A3

CMOS INPUTS AND OUTPUTS

PORT A

A4

Figure 2: Main components of the PIC16F84.

5

PIC inputs are CMOS-compatible; PIC outputs can drive TTL or CMOS

logic chips. Each output pin can source or sink 20 mA as long as only one

pin is doing so at a time. Further information about electrical limits is

given in the PIC16F84 data sheet.

The ’F84 also has some features we won’t be using, including an EEP-

ROM for long-term storage of data, an onboard timer-counter module,

and optional pull-up resistors on port B.

1.2 Power and clock requirements

The PIC16F84 requires a 5-volt supply; actually, any voltage from 4.0 to

6.0 volts will do fine, so you can run it from three 1.5-volt cells. Figure

3 shows several power-supply options. The PIC consumes only 1 mA –

even less, at low clock speeds – but the power supply must also provide

the current flowing through LEDs or other high-current devices that the

PIC may be driving. Thus, the last circuit, with the Zener diode, is only

for PICs that aren’t driving LEDs.

All four power supply circuits rely on a 0.1-µF capacitor from pin 14

(V+) to ground, mounted close to the PIC, to protect the PIC and adja-

cent components from electrical noise. This capacitor should be present

no matter how clean you think your DC supply is.

The MCLR pin is normally connected to V+ through a 10k resistor.

Grounding it momentarily will clear RAM and reset the PIC. If your power

supply voltage comes up slowly, the PIC may start up in a confused state;

in that case you should add a normally-open reset button from MCLR to

ground.

6

Like any CPU, the PIC needs a clock – an oscillator to control the speed

of the CPU and step it through its operations. The maximum clock fre-

quency of the PIC16F84-04P is, as already noted, 4 MHz. There is no lower

limit. Low clock frequencies save power and reduce the amount of count-

ing the PIC has to do when timing a slow operation. At 30 kHz, a PIC can

run on 0.1 mA.

Figure 4 shows the most popular clock circuits. The clock signal can be

fed in from an external source, or you can use the PIC’s on-board oscilla-

tor with either a crystal or a resistor and capacitor. Crystals are preferred

for high accuracy; 3.58-MHz crystals, mass-produced for color TV circuits,

work well and are very cheap. The resistor-capacitor oscillator is cheaper

yet, but the frequency is somewhat unpredictable; don’t use it if your cir-

cuit needs to keep time accurately.

2 PART 2 - YOUR FIRST PROGRAM

2.1 Assembly language

A PIC spends its time reading instructions from the program memory, one

after another, and doing whatever these instructions say. Each instruction

consists of 14 bits. If you could see the bits as binary ones and zeroes, the

program in Figure 5 would look like this:

11000000000000

00000001100110

11000000000001

8

EXTERNAL CLOCK

NC

16

15

O2

O1

PIC16F84

16

15

O2

O1

PIC16F84

2-4

MHz

22

pF

22

pF

16

15

O2

O1

PIC16F84

NC

100

pF

+5V

3.3K (1.5 MHz)

10K (600 kHz)

100K (100 kHz)

Figure 4: Three ways to provide the clock signal to a PIC.

9

; File TURNON.ASM
; Assembly code for PIC16F84 microcontroller

; Turns on an LED connected to B0.
; Uses RC oscillator, about 100 kHz.

; CPU configuration
; (It’s a 16F84, RC oscillator,
; watchdog timer off, power-up timer on.)

processor 16f84
include <p16f84.inc>
__config _RC_OSC & _WDT_OFF & _PWRTE_ON

; Program

org 0 ; start at address 0

; At startup, all ports are inputs.
; Set Port B to all outputs.

movlw B’00000000’ ; w := binary 00000000
tris PORTB ; copy w to port B control reg

; Put a 1 in the lowest bit of port B.

movlw B’00000001’ ; w := binary 00000001
movwf PORTB ; copy w to port B itself

; Stop by going into an endless loop

fin: goto fin

end ; program ends here

Figure 5: A complete PIC assembly-language program.

10

00000010000110

10100000000100

The earliest computers were programmed by technicians writing binary

codes just like this. As you can see, though, binary codes are very hard for

human beings to read or write because they’re completely arbitrary; they

look like gibberish.

Another reason binary codes are hard to write is that many of them

refer to locations in memory. For instance, a “go to” instruction will have

to say what memory address to jump to. Programming would be much

easier if you could label a location in the program and have the computer

figure out its address.

For both of these reasons, assembly language was invented over forty

years ago. Or, to be more precise, many assembly languages have been in-

vented, one for each type of CPU. What assembly languages have in com-

mon is that the instructions are abbreviated by readable codes (mnemonics)

such as GOTO and locations can be represented by programmer-assigned

labels. For example, in assembly language, the binary instructions just

mentioned would be:

movlw B’00000000’

tris PORTB

movlw B’00000001’

movwf PORTB

fin: goto fin

In English: Put the bit pattern 00000000 into the W register and copy it to

the tri-state control register for port B, thereby setting up port B for output;

11

then put 00000001 into W and copy it to port B itself; and finally stop the

program by going into an endless loop.

2.2 Program layout

Figure 5 shows a complete, ready-to-assemble program. Look closely at its

layout. The semicolon (;) is the comment marker; the computer ignores

everything after the semicolon on each line. Much of the program consists

of comments; that’s as it should be, because although it’s not as bad as

binary code, assembly language is still relatively hard to read.

Each instruction is divided into three parts, the label, the opcode (opera-

tion code or instruction code), and the operand (also called argument). For

example, in the line

fin: goto fin

the label is fin: (with a colon), the opcode is goto, and the operand is

fin.

The label, opcode, and operand are separated by spaces. The assembler

doesn’t care how many spaces you use; one is enough, but most program-

mers use additional spaces to make their instructions line up into neat

columns.

If there’s no label, there must be at least one blank before the opcode,

or the assembler will think the opcode is a label. Although current PIC

assemblers can often recover from this kind of error, it is an error, and

other assemblers aren’t so tolerant.

12

2.3 Assembling a program

A computer “assembles” the assembly-language program into the binary

instructions, which, for brevity, are actually written in hexadecimal (more

about this shortly) and stored on what is called a .HEX file. Some comput-

ers run their own assemblers, but the PIC is far too small for that; instead,

you’ll type and assemble your PIC programs on a DOS or Windows PC.

Then you’ll download the .HEX file into a PIC using a PIC programmer

and its associated software.

The program in Figure 5 does one very simple thing – it turns on an

LED connected to pin B0. Figure 6 shows the circuit needed to try this

program out. You can also use the circuit in Figure 10 or the demonstra-

tion board included with the Ramsey Electronics PICPRO-1. Admittedly,

turning on one LED is not a great feat of computation, but it’s enough to

show that the PIC works.

To assemble this program, you’ll need MPASM, the free PIC assem-

bler downloadable from http://www.microchip.com. You also need the file

P16F84.INC, which comes with MPASM and tells the assembler the par-

ticulars of the ’F84 as opposed to the numerous other varieties of PIC. You

won’t need the other .INC files also included with the assembler.

What you do is type your program onto a file with a name ending in

.ASM, using Windows Notepad, DOS EDIT, or any other text editor. Don’t

use a word processor unless you are sure you can save your file as plain

ASCII.

Then run MPASM from a DOS prompt (a DOS box under Windows is

OK). If your program file is named turnon.asm, type the command

13

1

2

3

4

5

6

18

17

16

15

14

13

A2

A3

A4

MCLR

GND

B0
 B7

V+

O2

O1

A0

A1

12

11

10

7

8

9

B1

B2

B3
 B4

B5

B6

IC1

PIC16F84
 R2

100K

C1

0.1

µ
F

C2

100

pF

R1

10K

+5V

R3

1K

LED

Figure 6: Circuit for simple program that turns on an LED (Fig. 5).

14

Figure 7: Running MPASM, the PIC assembler.

15

mpasm turnon.asm

and Figure 7 shows what you’ll see on the screen.

What MPASM is telling you is that it assembled your .ASM file, gener-

ating one warning message (which is unimportant – more about this later)

and no error messages. The results consists of a .HEX file containing the

assembled instructions and a .LST file containing a detailed program list-

ing with error messages. If the program contained serious errors, no .HEX

file would be generated and you should study the .LST file to see what

went wrong.

MPASM is the simple way to go. Microchip also gives away a devel-

opment environment called MPLAB (Figure 8) that contains an assembler

plus a simulator so you can make your PC pretend to be a PIC and actually

see your program run. MPLAB is very useful but its operation is beyond

the scope of this article. See http://www.covingtoninnovations.com/noppp

for some tips.

Now that you have a .HEX file, you have to get it into the PIC. This

is done with a programmer such as Microchip’s “Picstart Plus” or the

NOPPP programmer featured in Electronics Now, September 1998, and now

marketed by Ramsey Electronics as PICPRO-1. On your PC, you run what-

ever software your programmer requires and follow the instructions.

Finally, put the programmed PIC into the circuit (handling it carefully

to prevent static damage) and apply 5 volts. The LED should turn on.

There – you’ve made a PIC do something.

16

Figure 8: MPLAB, the PIC development environment.

17

2.4 How the program works

Now look back at Figure 5 and consider the program in detail. More than

half of what you see there consists of comments; everything after the first

semicolon (;) in each line is a comment ignored by the computer.

The program starts with a number of pseudo instructions, commands

that give information to the assembler but are not translated into machine

instructions. The first pseudo instruction,

processor PIC16F84

tells the assembler what kind of CPU you’re using. It’s immediately fol-

lowed by another instruction,

include <p16f84.inc>

telling the assembler to read the file P16F84.INC, which contains a lot more

pseudo instructions giving the memory addresses of the ports and other

particulars of this CPU.

Next comes the __config macro instruction:

__config _RC_OSC & _WDT_OFF & _PWRTE_ON

Notice that there are two underscore marks at the beginning of __config.

This instruction specifies some configuration settings to be programmed

into the PIC. It says you’re using an RC oscillator (resistor and capacitor,

not crystal); the watchdog timer is off; and the power-up timer is on. The

power-up timer imposes a slight delay at startup to give the 5-volt supply

time to stabilize. The watchdog timer is a built-in device for rebooting the

PIC every 18 milliseconds; some programs use this to protect themselves

18

from endless loops, but it’s very important to turn it off if you’re not using

it, or your program will keep restarting itself at inopportune moments.

The last pseudo instruction is

org 0

which means, “The next instruction should go at address 0 in program

memory.” That is, you’re telling the assembler where to start. Then come

the program instructions, and finally the pseudo instruction

end

which tells the assembler that the program is over. Unlike END in BASIC,

end in assembly language does not tell the program to stop running.

2.5 What the instructions do

Now look at the actual CPU instructions in the program, namely:

movlw B’00000000’

tris PORTB

movlw B’00000001’

movwf PORTB

fin: goto fin

What the program needs to do is set up port B for output, place a 1 into

the lowest bit of port B (causing pin B0 to go high), and stop. Consider

the last of these first. How do you stop a program? Not by making the

processor go dead, because then the output at B0 would disappear and

19

the LED would turn off. Nor by exiting to the operating system, because

there isn’t an operating system. Your program has the PIC all to itself.

The way you stop this program is by putting it in an endless loop.

That’s accomplished by the instruction

fin: goto fin

which simply jumps back to itself, over and over.

Now look at the previous step. How do you place a 1 in the lowest

bit of port B? From the CPU’s viewpoint, port B is an 8-bit register and

we want to place binary 00000001 in it. But there is no CPU instruction

to place a specified value (a “literal”) directly into a port. Instead, the

program places 00000001 into the W register using a movlw instruction

(“move literal to W”) and then copies W to port B using a movwf instruc-

tion (“move W to file register”).

Note that in assembly language, “move” always means “copy.” That

is, every “move” instruction actually copies data from one place to another,

leaving the original unchanged. This is true of all the assembly languages

I’ve seen, regardless of the kind of CPU.

Note also that in PIC assembly language, the name of port B is PORTB

(all capitals), not portb (lower case). This name was defined in P16F84.INC.

MPLAB will recognize both names but the assembler won’t – a possible

source of confusion.

In order for port B to work as intended, it has to be set up as an output

port. Actually, each of its eight bits can be set as input or output, inde-

pendently of the others, but in this program, all eight bits are set to out-

20

put. This is done by zeroing the corresponding bits in the TRISB special-

function register.

2.6 Deprecated instructions – Error messages to ignore

And here we run into a “deprecated instruction,” a instruction that works

perfectly well but which the assembler tells us not to use. That is tris,

the instruction that copies W into that special function register. To set up

port B for output, we use the instructions

movlw B’00000000’

tris PORTB

and the second of these always generates a warning message.

The reason for the warning message is that some other PICs lack the

tris instruction, and in the interest of program portability, Microchip,

Inc., would like us not to use it. Instead, they want us to do something a

good bit more complicated, involving switching over to a different bank

of registers, then addressing the TRISB register by its address.

That’s their preference, but it need not be yours or mine. The tris in-

struction is fully supported on the ’F84; there’s nothing wrong with using

it; it is not unreliable or risky in any way. It just generates an error message

you have to ignore. The same is true of the option instruction, which lets

you set some CPU configuration options without switching register banks.

21

3 PART 3 - MAKING THE PIC COMPUTE

3.1 A more elaborate program

Figure 9 shows a more elaborate PIC program that makes eight LEDs blink

on, one at a time, in a “chaser” sequence. The sequence reverses direction

when you change the logic level on pin A0.

Figure 10 is the circuit for running it. You can make this circuit out of

the demo board that comes with the Ramsey PICPRO-1 if you add a switch

or jumper so that you can connect pin 17 (A0) to either V+ or ground. With

this program, do not leave pin 17 floating; it’s a CMOS input and will pick

up noise. Also, do not modify the program to light more than one LED at

a time; the PIC can’t output that much power.

3.2 Describing bit patterns

Before going any further, we need to lay some groundwork. Each PIC file

register, i/o port, and memory address consists of one 8-bit byte. Thus,

any PIC assembly-language program is going to contain a lot of groups of

eight bits. There are three main ways to describe a bit pattern: in binary,

in hexadecimal, or in decimal.

Obviously, you can describe a bit pattern by writing out the bits them-

selves, such as B’00011101’. In PIC assembly language, the B and quotes

are required. The lowest-numbered bit comes last; if you output B’00000001’

on port B, pin B0 will go high, but B’10000000’ will make pin B7 go

high.

You may have been told that computers treat everything as numbers.

22

; File CHASER.ASM
; Blinks LEDs on outputs (Port B) in a rotating pattern.
; Reverses direction if port A, Bit 0, is high.

processor 16f84
include <p16f84.inc>
__config _RC_OSC & _WDT_OFF & _PWRTE_ON

; Give names to 2 memory locations (registers)
J equ H’1F’ ; J = address hex 1F
K equ H’1E’ ; K = address hex 1E
; Program

org 0 ; start at address 0
; Set Port B to output and initialize it.
movlw B’00000000’ ; w := binary 00000000
tris PORTB ; copy w to port B control reg
movlw B’00000001’ ; w := binary 00000001
movwf PORTB ; copy w to port B itself
bcf STATUS,C ; clear the carry bit
; Main loop. Check Port A, Bit 0, and rotate either left
; or right through the carry register.

mloop:
btfss PORTA,0 ; skip next instruction if bit=1
goto m1
rlf PORTB,f ; rotate port B bits to left
goto m2

m1:
rrf PORTB,f ; rotate port B bits to right

m2:
; Waste some time by executing nested loops
movlw D’50’ ; w := 50 decimal
movwf J ; J := w

jloop: movwf K ; K := w
kloop: decfsz K,f ; K := K-1, skip next if zero

goto kloop
decfsz J,f ; J := J-1, skip next if zero
goto jloop
goto mloop ; do it all again
end ; program ends here

Figure 9: A more elaborate PIC program.

23

1

2

3

4

5

6

18

17

16

15

14

13

A2

A3

A4

MCLR

GND

B0
 B7

V+

O2

O1

A0

A1

12

11

10

7

8

9

B1

B2

B3
 B4

B5

B6

IC1

PIC16F84
 R2

100K
R1

10K

+5V

R3-

R10

1K

C2 100 pF

C1 0.1
µ
F

LED1-

LED10

(RED OR

GREEN)

S1

Figure 10: With program in Fig. 9, LEDs flash in chaser sequence; switch
S1 reverses direction.

24

That’s not true; computers treat everything as bit patterns. Nonetheless,

one common way of interpreting bit patterns is to take them as binary

numbers. When this is done, you can write the same number more con-

cisely in another base (radix). For example, binary 00000110 is 1×4+1×2,

or 6 in ordinary (decimal) notation. (In this context “decimal” does not im-

ply that there are digits to the right of the point.) Converted to decimal,

the 256 possible 8-bit bytes, B’00000000’ to B’11111111’, range from

0 to 255.

It turns out to be even more convenient to convert binary numbers to

base 16 (hexadecimal, or hex for short). In hex, there are sixteen digits, 0,

1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. As you might guess, A means 10,

B means 11, and so forth up to F = 15. Thus FF means fifteen sixteens plus

fifteen ones, or 255 (binary 11111111).

The reason hex is used is that each hex digit corresponds to four bi-

nary digits. If binary 0110 equals hex 6, then binary 01100110 equals hex

66. With some practice, you can learn to do hex-binary conversions in

your head. Many scientific calculators can interconvert hex, binary, and

decimal. Figure 11 is a complete conversion chart for all possible 8-bit

patterns.

3.3 A word of warning

In PIC assembly language you should normally specify the base of every

number you write, such as B’11111111’, D’255’, or H’FF’. If you write

numbers without the quotes and base indication, they will normally be

taken as hex, but it’s best to be safe. If you write a character between

25

Hexadecimal Hexadecimal Hexadecimal Hexadecimal
| Binary | Binary | Binary | Binary
| | | | | | | |

0 00 00000000 64 40 01000000 128 80 10000000 192 C0 11000000
1 01 00000001 65 41 01000001 129 81 10000001 193 C1 11000001
2 02 00000010 66 42 01000010 130 82 10000010 194 C2 11000010
3 03 00000011 67 43 01000011 131 83 10000011 195 C3 11000011
4 04 00000100 68 44 01000100 132 84 10000100 196 C4 11000100
5 05 00000101 69 45 01000101 133 85 10000101 197 C5 11000101
6 06 00000110 70 46 01000110 134 86 10000110 198 C6 11000110
7 07 00000111 71 47 01000111 135 87 10000111 199 C7 11000111
8 08 00001000 72 48 01001000 136 88 10001000 200 C8 11001000
9 09 00001001 73 49 01001001 137 89 10001001 201 C9 11001001
10 0A 00001010 74 4A 01001010 138 8A 10001010 202 CA 11001010
11 0B 00001011 75 4B 01001011 139 8B 10001011 203 CB 11001011
12 0C 00001100 76 4C 01001100 140 8C 10001100 204 CC 11001100
13 0D 00001101 77 4D 01001101 141 8D 10001101 205 CD 11001101
14 0E 00001110 78 4E 01001110 142 8E 10001110 206 CE 11001110
15 0F 00001111 79 4F 01001111 143 8F 10001111 207 CF 11001111
16 10 00010000 80 50 01010000 144 90 10010000 208 D0 11010000
17 11 00010001 81 51 01010001 145 91 10010001 209 D1 11010001
18 12 00010010 82 52 01010010 146 92 10010010 210 D2 11010010
19 13 00010011 83 53 01010011 147 93 10010011 211 D3 11010011
20 14 00010100 84 54 01010100 148 94 10010100 212 D4 11010100
21 15 00010101 85 55 01010101 149 95 10010101 213 D5 11010101
22 16 00010110 86 56 01010110 150 96 10010110 214 D6 11010110
23 17 00010111 87 57 01010111 151 97 10010111 215 D7 11010111
24 18 00011000 88 58 01011000 152 98 10011000 216 D8 11011000
25 19 00011001 89 59 01011001 153 99 10011001 217 D9 11011001
26 1A 00011010 90 5A 01011010 154 9A 10011010 218 DA 11011010
27 1B 00011011 91 5B 01011011 155 9B 10011011 219 DB 11011011
28 1C 00011100 92 5C 01011100 156 9C 10011100 220 DC 11011100
29 1D 00011101 93 5D 01011101 157 9D 10011101 221 DD 11011101
30 1E 00011110 94 5E 01011110 158 9E 10011110 222 DE 11011110
31 1F 00011111 95 5F 01011111 159 9F 10011111 223 DF 11011111
32 20 00100000 96 60 01100000 160 A0 10100000 224 E0 11100000
33 21 00100001 97 61 01100001 161 A1 10100001 225 E1 11100001
34 22 00100010 98 62 01100010 162 A2 10100010 226 E2 11100010
35 23 00100011 99 63 01100011 163 A3 10100011 227 E3 11100011
36 24 00100100 100 64 01100100 164 A4 10100100 228 E4 11100100
37 25 00100101 101 65 01100101 165 A5 10100101 229 E5 11100101
38 26 00100110 102 66 01100110 166 A6 10100110 230 E6 11100110
39 27 00100111 103 67 01100111 167 A7 10100111 231 E7 11100111
40 28 00101000 104 68 01101000 168 A8 10101000 232 E8 11101000
41 29 00101001 105 69 01101001 169 A9 10101001 233 E9 11101001
42 2A 00101010 106 6A 01101010 170 AA 10101010 234 EA 11101010
43 2B 00101011 107 6B 01101011 171 AB 10101011 235 EB 11101011
44 2C 00101100 108 6C 01101100 172 AC 10101100 236 EC 11101100
45 2D 00101101 109 6D 01101101 173 AD 10101101 237 ED 11101101
46 2E 00101110 110 6E 01101110 174 AE 10101110 238 EE 11101110
47 2F 00101111 111 6F 01101111 175 AF 10101111 239 EF 11101111
48 30 00110000 112 70 01110000 176 B0 10110000 240 F0 11110000
49 31 00110001 113 71 01110001 177 B1 10110001 241 F1 11110001
50 32 00110010 114 72 01110010 178 B2 10110010 242 F2 11110010
51 33 00110011 115 73 01110011 179 B3 10110011 243 F3 11110011
52 34 00110100 116 74 01110100 180 B4 10110100 244 F4 11110100
53 35 00110101 117 75 01110101 181 B5 10110101 245 F5 11110101
54 36 00110110 118 76 01110110 182 B6 10110110 246 F6 11110110
55 37 00110111 119 77 01110111 183 B7 10110111 247 F7 11110111
56 38 00111000 120 78 01111000 184 B8 10111000 248 F8 11111000
57 39 00111001 121 79 01111001 185 B9 10111001 249 F9 11111001
58 3A 00111010 122 7A 01111010 186 BA 10111010 250 FA 11111010
59 3B 00111011 123 7B 01111011 187 BB 10111011 251 FB 11111011
60 3C 00111100 124 7C 01111100 188 BC 10111100 252 FC 11111100
61 3D 00111101 125 7D 01111101 189 BD 10111101 253 FD 11111101
62 3E 00111110 126 7E 01111110 190 BE 10111110 254 FE 11111110
63 3F 00111111 127 7F 01111111 191 BF 10111111 255 FF 11111111

Figure 11: Decimal–hex–binary conversion chart.

26

quotes without a base specifier, such as ’3’, it will be interpreted as the

bit pattern of that character’s ASCII code.

3.4 How the program works

We’re finally ready to look at the program. It uses rotate-right and rotate-

left instructions, rrf and rlf, to shift bits around in a byte; thus 00000001,

rotated left, becomes 00000010, then 00000100 and so forth. Rotating isn’t

just for LED chasers; it’s a handy way to pick off the bits in a byte, one by

one, for serial data transmission.

The bits being rotated pass through a ninth bit called the carry flag; as

you might imagine, the carry flag is also used to keep track of the ninth

digit when adding two eight-digit binary numbers. Accordingly, the first

thing the program does, other than set up its ports, is clear the carry bit

(set it to zero):

bcf STATUS,C

Here STATUS and C are names given by P16F84.INC to the status register

and the carry bit within it. They must be written in all capitals. You could

refer to the carry bit by its address if you wanted to.

The actual rotating is done by one of the instructions

rlf PORTB,f

rrf PORTB,f

but the program also has to decide which one to use, depending on the

signal at pin A0, and then introduce a time delay after each rotation.

27

3.5 Making decisions

At this point it’s a good idea to look at the full set of PIC instructions,

shown in Figures 12 and 13. A selling point of the PIC is that there are so

few instructions (only 35 if you count them the way the brochure-writers

do); what’s more, every instruction that doesn’t involve a jump executes

in just one clock cycle. Thus, the PIC qualifies as a form of RISC (reduced

instruction set computer). By contrast, the Pentium has hundreds of in-

structions, each of which takes several clock cycles to execute.

There is no “if” statement in PIC assembly language. Instead, the PIC

has several instructions that test for a condition and skip the next instruc-

tion if it is true. For example, in this program, the instructions

btfss PORTA,0

goto m1

mean “Go to m1 unless bit 0 of port A is set (=1).” The first instruction,

btfss, stands for “bit test file-register, skip next instruction if set.” So if

the appropriate bit is set, the goto is skipped. Even though port A is not

a file register, this instruction treats it as if it were.

By interleaving skips and gotos in this way, the series of instructions

btfss PORTA,0

goto m1

rlf PORTB,f

goto m2

m1:

rrf PORTB,f

28

ADDLW value Add W to value, place result in W
ADDWF address,F Add W to contents of address, store result at address
ADDWF address,W Add W to contents of address, place result in W

ANDLW value Logical-AND W with value, place result in W
ANDWF address,F Logical-AND W with contents of address, store result at address
ANDWF address,W Logical-AND W with contents of address, place result in W

BCF address,bitnumber Set specified bit to 0
BSF address,bitnumber Set specified bit to 1

BTFSC address,bitnumber Test bit, skip next instruction if bit is 0
BTFSS address,bitnumber Test bit, skip next instruction if bit is 1

CALL label Call subroutine (will return with RETURN or RETLW)

CLRF address Set contents of address to binary 00000000
CLRW Set W to binary 00000000

CLRWDT Reset (clear) the watchdog timer

COMF address,W Reverse all the bits of contents of address, place result in W
COMF address,F Reverse all the bits of contents of address, store result at address

DECF address,W Subtract 1 from contents of address, place result in W
DECF address,F Subtract 1 from contents of address, store result at address

DECFSZ address,W Like DECF address,W and skip next instruction if result is 0
DECFSZ address,F Like DECF address,F and skip next instruction if result is 0

GOTO label Jump to another location in the program

INCF address,W Add 1 to contents of address, place result in W
INCF address,F Add 1 to contents of address, store result at address

INCFSZ address,W Like INCF address,W and skip next instruction if result is 0
INCFSZ address,F Like INCF address,F and skip next instruction if result is 0

IORLW value Logical-OR W with value, place result in W
IORWF address,F Logical-OR W with contents of address, store result at address
IORWF address,W Logical-OR W with contents of address, place result in W

Figure 12: Complete instruction set of PIC16F84 (part 1 of 2).

29

MOVLW value Place value in W
MOVF address,W Copy contents of address to W
MOVF address,F Copy contents of address to itself (not useless; sets Z flag if zero)
MOVWF address Copy contents of W to address

NOP Do nothing

OPTION Copy W to option register (deprecated instruction)

RETFIE Return from interrupt

RETLW value Return from subroutine, placing value into W

RETURN Return from subroutine

RLF address,F Rotate bits left through carry flag, store result at address
RLF address,W Rotate bits left through carry flag, place result in W

RRF address,F Rotate bits right through carry flag, store result at address
RRF address,W Rotate bits right through carry flag, place result in W

SLEEP Go into standby mode

SUBLW value Subtract W from value, place result in W
SUBWF address,F Subtract W from contents of address, store result at address
SUBWF address,W Subtract W from contents of address, place result in W

SWAPF address,W Swap half-bytes at address, place result in W
SWAPF address,F Swap half-bytes at address, store result at address

TRIS PORTA Copy W into i/o control register for Port A (deprecated)
TRIS PORTB Copy W into i/o control register for Port B (deprecated)

XORLW value Logical-XOR W with value, place result in W
XORWF address,F Logical-XOR W with contents of address, store result at address
XORWF address,W Logical-XOR W with contents of address, place result in W

Figure 13: Complete instruction set of PIC16F84 (part 2 of 2).

30

m2:

rotates the bits of port A to the left if A0=1 and to the right if A0=0.

If you know another assembly language, you may be wondering how

the PIC gets away without having a byte compare (CMP) instruction. The

answer is that bytes are compared by subtracting them and then checking

whether the result is zero.

3.6 Minding your F’s and W’s

Many PIC instructions, including rlf and rrf, come in two varieties, one

ending in f and the other ending in w, which are actually abbreviations

for 0 and 1 respectively. These are destination codes: f means the result

should to in the file register or other memory address that you have spec-

ified; w means the result should go in the W register.

3.7 Looping

Obviously, the main program will be an endless loop – shift the bits of

Port A, delay a few milliseconds, and then go back and do the whole thing

again. That’s taken care of by the mloop label at the beginning of the main

loop and the goto mloop instruction at the end.

The time delay loop is more complicated because it requires counting.

In BASIC, it would look roughly like this:

FOR J=50 TO 1 STEP -1

FOR K=50 TO 1 STEP -1

REM do nothing

31

NEXT K

NEXT J

That is, waste time by counting 50 × 50 = 2500 steps.

But we’re not programming in BASIC. In PIC assembly language, the

time delay loop looks like this:

movlw D’50’

movwf J

jloop: movwf K

kloop: decfsz K,f

goto kloop

decfsz J,f

goto jloop

Here’s how it works. First, note that counting down is easier than counting

up because it’s easier to test whether a byte equals 0 than whether it equals

some other number. So we stuff decimal 50 into variables J and K at the

beginning of the loop. The value 50 is stored in W, which doesn’t change

during the whole process; thus it can be copied into K fifty times.

The crucial instruction here is

decfsz K,f

which means, “Decrement (that is, subtract 1) and skip the next instruction

if the result of decrementing was zero.” Thus, a decfsz followed by a

goto means “Subtract 1 and go back unless the result of the subtraction

was 0.” Two decfsz loops, nested, produce the time delay we need. On

32

the last pass through the loop, the value of J or K respectively is 1; then,

when it reaches 0, the program exits the loop.

3.8 Defining variables

But wait a minute. Where did we get the variables J and K? Those aren’t

the names of file registers, are they?

Actually, they are names now, because we defined them. At the begin-

ning of the program, the pseudo instructions

J equ H’1F’

K equ H’1E’

define J and K to be abbreviations for two hex numbers, 1F and 1E, which

are the addresses of two suitable file registers. These registers were chosen

by looking at the memory map in the PIC16F84 manual; it’s entirely up to

the programmer to choose a suitable address for each variable.

3.9 Debugging your programs

Finally, a few words about debugging your own programs. Any program

should be designed so that you can build and test it in stages, as we did

with the two programs in this article: first figure out how to turn on one

LED, then get all eight blinking in the proper sequence. In real life there

would probably be several stages in between, in which you turn on var-

ious LEDs and test the time delay loop. Because the PIC16F84 can be re-

programmed instantly, there’s no need to implement the whole program

before you test any of it.

33

Unused output lines can be put to good use for debugging. If your

program is complicated, make it send some signals out one or more spare

port pins so that you can use a voltmeter or oscilloscope to tell what part

of the program is running. If nothing else, output a “heartbeat” bit that

toggles every time the program goes through its main loop.

3.10 Where to go from here

Now all that’s left is to learn the rest of the assembly language and the

art of microcontroller software development – not something you’ll do in

one weekend, but at least your career has been launched. A good book to

start with is Easy PIC’n, by David Benson, published by Square One Press

(http://www.sq-1.com; you can special-order it through any bookstore). To-

gether with its sequels, PIC’n Up the Pace and PIC’n Techniques, it takes you

through PIC programming from the very beginning. These books use the

PIC16F84 or its software-compatible twin, the PIC16C84, for most of the

projects.

More advanced books about PICs include Programming and Customiz-

ing the PIC Microcontroller, by Myke Predko (McGraw-Hill, 1998), and De-

sign with PIC Microcontrollers, by John B. Peatman (Prentice Hall, 1998).

The last of these is a very professional guide based on the PIC16C74A.

34

