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1. INTRODUCTION. When we have an integral that depends on a parameter, say
F(x) = ∫ b

a f (x, y) dy, it is often important to know when F is differentiable and

when F ′(x) = ∫ b
a f1(x, y) dy. A sufficient condition for differentiating under the in-

tegral sign is that
∫ b

a f1(x, y) dy converges uniformly; see [6, p. 260]. When we have

absolute convergence, the condition | f1(x, y)| ≤ g(y) with
∫ b

a g(y) dy < ∞ suffices
(Weierstrass M-test and Lebesgue Dominated Convergence). If we use the Henstock
integral, then it is not difficult to give necessary and sufficient conditions for differen-
tiating under the integral sign. The conditions depend on being able to integrate every
derivative.

If g : [a, b] → R is continuous on [a, b] and differentiable on (a, b) it is not always
the case that g′ is Riemann or Lebesgue integrable over [a, b]. However, the Hen-
stock integral integrates all derivatives and thus leads to the most complete version
of the Fundamental Theorem of Calculus. The Henstock integral’s definition in terms
of Riemann sums is only slightly more complicated than for the Riemann integral
(simpler than the improper Riemann integral), yet it includes the Riemann, improper
Riemann, and Lebesgue integrals as special cases. Using the very strong version of
the Fundamental Theorem we can formulate necessary and sufficient conditions for
differentiating under the integral sign.

2. AN INTRODUCTION TO THE HENSTOCK INTEGRAL. Here we lay out
the facts about Henstock integration that we need. There are now quite a number of
works that deal with this integral; two good ones to start with are [1] and [3].

Let f : [−∞,∞] → (∞,∞). A gauge is a mapping γ from [−∞,∞] to the
open intervals in [−∞,∞]. By open interval we mean (a, b), [−∞, b), (a,∞], or
[−∞,∞] for all −∞ ≤ a < b ≤ ∞ (the two-point compactification of the real line).
The defining property of the gauge is that for all x ∈ [−∞,∞], γ (x) is an open
interval containing x . A tagged partition of [−∞,∞] is a finite set of pairs P =
{(zi , Ii)}N

i=1, where each Ii is a nondegenerate closed interval in [−∞,∞] and zi ∈ Ii .
The points zi ∈ [−∞,∞] are called tags and need not be distinct. The intervals {Ii }N

i=1
form a partition: For i �= j , Ii ∩ I j is empty or a singleton and ∪N

i=1 Ii = [−∞,∞]. We
say P is γ -fine if Ii ⊂ γ (zi) for all 1 ≤ i ≤ N . Let |I | denote the length of an interval
with |I | = 0 for an unbounded interval. Then, f is Henstock integrable, and we write∫ ∞

−∞ f = A, if there is a real number A such that for all ε > 0 there is a gauge function
γ such that if P = {(zi , Ii)}N

i=1 is any γ -fine tagged partition of [−∞,∞] then
∣∣∣∣∣

N∑
i=1

f (zi) |Ii | − A

∣∣∣∣∣ < ε.

Note that N is not fixed and the partitions can have any finite number of terms. We
can integrate over an interval [a, b] ⊂ [−∞,∞] by multiplying the integrand with the
characteristic function χ[a,b].
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The more dramatically a function changes near a point z, the smaller γ (z) becomes.
With the Riemann integral the intervals are made uniformly small. Here they are lo-
cally small. A function is Riemann integrable on a finite interval if and only if the
gauge can be taken to assign intervals of constant length. It is not too surprising that
the Henstock integral includes the Riemann integral. What is not so obvious is that the
Lebesgue integral is also included. And, the Henstock integral can integrate functions
that are neither Riemann nor Lebesgue integrable. An example is the function f = g′
where g(x) = x2 sin(1/x3) for x �= 0 and g(0) = 0; the origin is the only point of
nonabsolute summability. See [5, p. 148] for a function that is Henstock integrable
but whose points of nonabsolute summability have positive measure. A key feature of
the Henstock integral is that it is nonabsolute: an integrable function need not have an
integrable absolute value.

The convention |I | = 0 for an unbounded interval performs essentially the same
truncation that is done with improper Riemann integrals and the Cauchy extension
of Lebesgue integrals. A consequence of this is that there are no improper Henstock
integrals. This fact is captured in the following theorem, which is proved for finite
intervals in [3].

Theorem 1. Let f be a real-valued function on [a, b] ⊆ [−∞,∞]. Then
∫ b

a f exists
and equals A ∈ R if and only if f is integrable on each subinterval [a, x] ⊂ [a, b] and
limx→b−

∫ x
a f exists and equals A.

Lebesgue integrals can be characterised by the fact that the indefinite integral
F(x) = ∫ x

a f is absolutely continuous. A similar characterisation is possible with the
Henstock integral. We need three definitions. Let F : [a, b] → R. We say F is abso-
lutely continuous (AC) on a set E ⊆ [a, b] if for each ε > 0 there is some δ > 0 such
that

∑N
i=1 |F(xi) − F(yi)| < ε for all finite sets of disjoint open intervals {(xi , yi)}N

i=1

with endpoints in E and
∑N

i=1(yi − xi) < δ. We say that F is absolutely continuous
in the restricted sense (AC∗) if instead we have

∑N
i=1 supx,y∈[xi ,yi ] |F(x) − F(y)| < ε

under the same conditions as with AC . And, F is said to be generalised absolutely
continuous in the restricted sense (ACG∗) if F is continuous and E is the count-
able union of sets on each of which F is AC∗. Two useful properties are that among
continuous functions, the ACG∗ functions are properly contained in the class of func-
tions that are differentiable almost everywhere and they properly contain the class of
functions that are differentiable nearly everywhere (differentiable except perhaps on a
countable set). A function f is Henstock integrable if and only if there is an ACG∗
function F with F ′ = f almost everywhere. In this case F(x) − F(a) = ∫ x

a f . For an
unbounded interval such as [0,∞], continuity of f at ∞ is obtained by demanding
that limx→∞ F(x) exists.

We have given an example that shows that not all derivatives are Lebesgue inte-
grable. However, all derivatives are Henstock integrable. This leads to a very strong
version of the Fundamental Theorem of Calculus. A proof can be pieced together from
results in [3].

Theorem 2. (Fundamental Theorem of Calculus)

I Let f : [a, b] → R. Then
∫ b

a f exists and F(x) = ∫ x
a f for all x ∈ [a, b] if and

only if F is ACG∗ on [a, b], F(a) = 0, and F ′ = f almost everywhere on (a, b).
If

∫ b
a f exists and f is continuous at x ∈ (a, b) then d

dx

∫ x
a f = f (x).
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II Let F : [a, b] → R. Then F is ACG∗ if and only if F ′ exists almost everywhere
on (a, b), F ′ is Henstock integrable on [a, b], and

∫ x
a F ′ = F(x) − F(a) for all

x ∈ [a, b].
Here is a useful sufficient condition for integrability of the derivative:

Corollary 3. Let F : [a, b] → R be continuous on [a, b] and differentiable nearly ev-
erywhere on (a, b). Then F ′ is Henstock integrable on [a, b] and

∫ x
a F ′ = F(x) −

F(a) for all x ∈ [a, b].
The improvement over the Riemann and Lebesgue cases is that we need not as-

sume the integrability of F ′. Integration and differentiation are now inverse operations.
To make this explicit, let A be the vector space of Henstock integrable functions on
[a, b] ⊆ [−∞,∞], identified almost everywhere. Let B be the vector space of ACG∗
functions vanishing at a. Let

∫
be the integral operator defined by

∫ [ f ](x) = ∫ x
a f for

f ∈ A. Let D be the differential operator defined by D[ f ](x) = f ′(x) for f ∈ B. The
Fundamental Theorem then says that D ◦ ∫ = IA and

∫ ◦D = IB .

3. DIFFERENTIATION UNDER THE INTEGRAL SIGN.

Theorem 4. Let f : [α, β] × [a, b] → R. Suppose that f (·, y) is ACG∗ on [α, β]
for almost all y ∈ (a, b). Then F := ∫ b

a f (·, y) dy is ACG∗ on [α, β] and F ′(x) =∫ b
a f1(x, y) dy for almost all x ∈ (α, β) if and only if

t∫
x=s

b∫
y=a

f1(x, y) dy dx =
b∫

y=a

t∫
x=s

f1(x, y) dx dy for all [s, t] ⊆ [α, β]. (1)

Proof. Suppose F is ACG∗ and ∂

∂x

∫ b
a f (x, y) dy = ∫ b

a f1(x, y) dy. Let [s, t] ⊆
[α, β]. By the second part of the Fundamental Theorem, applied first to F and then to
f (·, y),

t∫
x=s

b∫
y=a

f1(x, y) dy dx = F(t) − F(s) =
b∫

y=a

[ f (t, y) − f (s, y)] dy (2)

=
b∫

y=a

t∫
x=s

f1(x, y) dx dy.

Now assume (1). Let x ∈ (α, β) and let h ∈ R be such that x + h ∈ (α, β). Then,
applying the second part of the Fundamental Theorem to f (·, y) gives

x+h∫
x ′=x

b∫
y=a

f1(x ′, y) dy dx ′ =
b∫

y=a

x+h∫
x ′=x

f1(x ′, y) dx ′ dy =
b∫

y=a

[ f (x + h, y) − f (x, y)] dy

=
b∫

y=a

f (x + h, y) dy −
b∫

y=a

f (x, y) dy. (3)
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And,

F ′(x) = lim
h→0

1

h
[F(x + h) − F(x)]

= lim
h→0

1

h

x+h∫
x ′=x

b∫
y=a

f1(x ′, y) dy dx ′

=
∫ b

a
f1(x, y) dy for almost all x ∈ (α, β).

The last line comes from the first part of the Fundamental Theorem. Repeating the ar-
gument in (2) shows that

∫ x
α

F ′ = F(x) − F(α) for all x ∈ [α, β]. Hence, F is ACG∗
on [α, β].

The theorem holds for −∞ ≤ α < β ≤ ∞ and −∞ ≤ a < b ≤ ∞. Partial ver-
sions of the theorem are given in [4, p. 357] for the Lebesgue integral and in [2, p. 63]
for the wide Denjoy integral, which includes the Henstock integral.

From the proof of the theorem it is clear that only the linearity of the integral over
y ∈ [a, b] ((2) and (3)) comes into play with this variable. Hence, we have the follow-
ing generalisation.

Corollary 5. Let S be some set and suppose f : [α, β] × S → R. Let f (·, y) be ACG∗
on [α, β] for all y ∈ S. Let T be the real-valued functions on S and let L be a linear
functional defined on a subspace of T . Define F : [α, β] → R by F(x) = L[ f (x, ·)].
Then F is ACG∗ on [α, β] and F ′(x) = L[ f1(x, ·)] for almost all x ∈ (α, β) if and
only if

∫ t

s
L[ f1(x, ·)] dx = L

∫ t

s
f1(x, ·) dx for all [s, t] ⊆ [α, β].

If f (x, y) = ∫ x
α

g(x ′, y) dx ′ then f (·, y) is automatically ACG∗. This gives neces-
sary and sufficient conditions for interchanging iterated integrals.

Corollary 6. Let g : [α, β] × [a, b] → R. Suppose that g(·, y) is integrable over
[α, β] for almost all y ∈ (a, b). Define G(x) = ∫ b

a

∫ x
α

g(x ′, y) dx ′ dy. Then G is

ACG∗ on [α, β] and G ′(x) = ∫ b
a g(x, y) dy for almost all x ∈ (α, β) if and only if

t∫
x=s

b∫
y=a

g(x, y) dy dx =
b∫

y=a

t∫
x=s

g(x, y) dx dy for all [s, t] ⊆ [α, β]. (4)

Combining Corollaries 5 and 6 gives necessary and sufficient conditions for inter-
changing summation and integration.

Corollary 7. Let g : [α, β] × N → R and write gn(x) = g(x, n) for x ∈ [α, β] and
n ∈ N. Suppose that gn is integrable over [α, β] for each n ∈ N. Define G(x) =∑∞

n=1

∫ x
α

gn(x ′) dx ′. Then G is ACG∗ on [α, β] and G ′(x) = ∑∞
n=1 gn(x) for almost

all x ∈ (α, β) if and only if
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t∫
x=s

∞∑
n=1

gn(x) dx =
∞∑

n=1

t∫
x=s

gn(x) dx for all [s, t] ⊆ [α, β]. (5)

The Fundamental Theorem and its corollary yield conditions sufficient to allow
differentiation under the integral.

Corollary 8. Let f : [α, β] × [a, b] → R.

i) Suppose that f (·, y) is continuous on [α, β] for almost all y ∈ (a, b) and is
differentiable nearly everywhere in (α, β) for almost all y ∈ (a, b). If (1) holds
then F ′(x) = ∫ b

a f1(x, y) dy for almost all x ∈ (α, β).
ii) Suppose that f (·, y) is ACG∗ on [α, β] for almost all y ∈ (a, b) and that∫ b

a f1(·, y) dy is continuous on [α, β]. If (1) holds then F ′(x) = ∫ b
a f1(x, y) dy

for all x ∈ (α, β).

Here is an example of what can go wrong when one differentiates under the integral
sign without justification. In 1815 Cauchy obtained the convergent integrals

∞∫
x=0

{
sin(x2)

cos(x2)

}
cos(sx) dx = 1

2

√
π

2

[
cos

(
s2

4

)
∓ sin

(
s2

4

)]
.

He then differentiated under the integral sign with respect to s and obtained the two
divergent integrals

∞∫
x=0

x

{
sin(x2)

cos(x2)

}
sin(sx) dx ‘ = ’

s

4

√
π

2

[
sin

(
s2

4

)
± cos

(
s2

4

)]
.

These divergent integrals have been reproduced ever since and still appear in standard
tables today, listed as converging. This story was told in [7].
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