The Packet Starvation Effect in CSMA/CD LANs and a Solution
Brian Whetten, Stephen Steinberg, Domenico Ferrari
University of California at Berkeley

Abstract

In this paper wexplore thepacket starvation effe€PSE)thatoccurs inEthernet controllers due to the unfairness of
the CSMA/CD algorithm. The PSEauses some packets to experience latencies up to 100thieness/erage or to
completely starve out due to 16 collisionhe PSEcauses some packets to experigmigh delays at realistioffered
loads adow as40% and causes complete starvation of some packetsfated loads atow as60%. The PSE makes
CSMA/CD LANSs unsuitable foreal-time traffic except aiffered loadsnuch lesshan100%. It is the limitingactor in
the usable bandwidth of the bus.

As an alternative to CSMA/CD, we present frar Dual DistributedQueue (FDDQlgorithm. Undetigh load,
FDDQ uses a single reservation mini-gbetr packeaind atree-based collision resolution algorit{@RA) to maintain
two distributed queues of waiting senders. Timisvides twopriority FCFS access tthe network. FDDQ provides
utilizations and average latencies very similar to those of CSMA/CD but isviair at extremellrigh offered loads. The
protocol is stable for a constant number of senders, is simple enough to be practical, should be implementable in
firmware, and completely eliminates the PSE.

network. We term this theacket starvation effe¢PSE),
1. Introduction and it occurs because packets have a probability of getting
access tothe networkinversely proportional totheir
Much literature hadeen devoted tthe study of the currentbackoffvalue. When a new packesmpetes with
CSMA/CD algorithmfor collision resolution, but most of ~an old one, the newer packeas a higheprobability of
it has concentrated on tisability of the algorithm, the ~ gaining accessand theprobability of the oldemacket
average fairness of itand theaverage delay and Winning a competitiorfor access exponentially decreases
utilization it can provide. These papers have shivet ~ With the number of failed attempts the ofshcket
while CSMA/CD is unstable at offered loamisich higher ~ participatesn. At highload, when there anesually two
than 100% and with smalpackets[5], in practice it can Of more packets in contention ftire network, thieffect
achieve utilizations inthe range of 90-97%[2]. This causes a significant portion of packets to experience
contradicts the conventionalwisdom of network ~ €xcessive delays or to be droppedter 16 failed
administrators, which holdghat Etherne.ANs[15] (as retransmission attempts.
defined by the IEEE 802.3 standardhave very badly While the PSkhas nobeenmuch of a problem in the
at offered loadsmuch higherthan 50%. Part of this Past (as shown by the overwhelmisyccess of the
problem is due to errors iBthernet implementations, but Ethernet) it isbecoming a problem for modern traffic
the majority of the problem is due to thirherent mixes which requirehigher bandwidthsand real-time
unfairness of CSMA/CD. assurances on packet latency. In addition, the PSE
We used an accurate Ethernet simulator to quantify thecompletely disallowsthe use of admission control
unfairness of CSMA/CD for aange of realistioffered ~ Schemes, such athat described byFerrari[6], which
loads. We tested loadsmilar to the continuousueue Provide real-time traffic guarantees.
model used fothe measurements pub“shed B]}ggs, While the simulations in this paper have been based on
Mogul and Kent[2], a data traffic modebased on the the 10Baseb5and 10Base2 versions dhe |IEEE 802.3
measurements by Gusella[@8hd acombination of this ~ standard, the results of this paper shoulo be
data traffic with loads designed to model MPEi@eo applicable to the 10BaseT standard, although the different
streams. topology of 10BaseTwill result in different collision
For the simulated loads, the standard deviation ofPatterns ananaychange the results slightly. In addition,
packet latency is oftetwo to fivetimes the average becausethe emerging 10Mbps 802.3 standards
latency, and at offered loads above 60%-70% a significanf(100BaseT, etc.) are designed to be virtually identical to
portion of packets starve oahdnevergain access to the

the 10BaseTstandard wheriewed fromthe MAC layer,

overview ofthese papers[2]. While some of these papers

these results should apply to these new standards as wellpoint out that at highloads the standard deviation of

Since real-time traffic is the primary driving force
behind faster LANs, we suggesttat the MAC layer
should be considered carefully. The IEEE 802.12
committee is working on th�BaseVGstandard which

solves these problems. As an alternative to reworking theeffect.

entire standard, wpropose a new MAC scheme called
the Fair Dual DistributedQueue (FDDQ)algorithm.

packet latency is two to five timésat of theaverage, and
Bux[3] showsthat Ethernets are not asitable forreal
time traffic as tokeming LANs, weare not aware of any
papersthat explain andanalyze the packet starvation
Nichols[17] analyzethe suitability of Ethernets
for real-time video traffic, and conclud#sat it issuitable
only up to an offered load 60%, which agrees with our

FDDQ is simple enough to be easily implemented in conclusions.

firmware as an alternative to CSMA/CD, provides two
priority FCFS access tthe LAN, is stabldor constant
numbers of senderand provides utilizationand average
delays very close t€SMA/CD. By removing th@acket
starvationeffect, it will allow LANs to berun at up to
95% utilization asopposed tadhe 60% to 70% the PSE
limits current Ethernets to.

FDDQ is one of a class of Collision Resolution
Algorithms (CRAs)thatrelies on all controller&eeping
track of the current state of the netwolkDDQ provides
two priority FCFS access tihe network bymaintaining

At least as many papers have been published on
collision resolution algorithms(CRAs) for broadcast
channels. Like FDDQ, almostll ofthese algorithms
have the controllers monitor the network constantly to
provide better collision resolution behaviofhe first of
this class of algorithmsvas published in 1977. It is the
tree-based collision scheme of Capetanakis[4]. It was
followed upwith improved variations bivassey[13] and
Gallager, Tsybakov,andMikhailov [7, 21]. All of these
algorithms assume #ully slotted networkwith fixed
packet lengths, where thmst of a collision is equal to

two globallydistributed queues of waiting senders acrossthat of apacket send. Whilsome of thesalgorithms

the controllers. FDDQ works like CSMA/CDuntil a
collision occurs, at which timeall sites notethat the
network is congested, enteongested modegnd create

claim FCFS scheduling, thenly dividethe senders into
the group of senders currently beingsolvedand the
waiting senders. Since the current group of senders can

two bucketsof senders, one on each queue. The senderde large, thiggreatly limits the scheduling resolution of

who were involved in the collision ptheir packets into a
bucket,and only attempt to sendhat packet whertheir
bucket comes tthe top of the highest priorityon-empty
gueue. Each packet sent while dongested mode is
succeeded by aordering slot Hosts reserve spots in the
distributed queues by sending Be ordering packets in
these ordering slots.

When multiple packets occur ithe saméucket, a
CRA with the sameeffect asthe tree-based Capetanakis
algorithm[4] is used to arbitratbetweenthem. This
algorithm repeatedly divideshe topbucket into two
buckets, with each hohhatwas inthat bucket randomly
choosing one of th@ew bucketsintil there isonly a
single sender in each bucket.

their FCFS access. Some protocols have been proposed
which use "control minislots" (CMS) to provide better
utilization bounds, including the announced arrival
randomaccess protocols[18nd adistributed queuing
algorithm[22]. These protocols involMeaving senders
announce their arrival imne of a series of minislots
before theycan send, similar to the single ordersigt
used by FDDQ. They both assuthat the length of the
minislots isvery small compared to the length of a data
packet, and sotypically use 3 or more minislots per
packet send.This istoo expensive for LANsuch as the
Ethernet. The distributed queuing algorithm is similar to
FDDQ in manyregards, but itusesthree minislots to
achieve stabilityand stops usingthe minislots for

Section 2 describes previous work. Section 3 describe®rdering while the top group of senders in theeue is

the simulatormethodology used irthe study and the
metrics used. Section 4 describasd quantifies the
packet starvatioreffect, and Section 5 presents tHeair

Dual Distributed Queualgorithm. Finally, Section 6
compares FDDQ to CSMA/CDand Section 7 draws
some conclusions.

2. Previous work

A large number of papers haveen written on the
analysis, simulationand measurement of theSMA/CD
algorithm. Boggs et al. provides a representative

being resolved. Because tifis, it is less efficient for
LANs than is FDDQ, and it has dwer scheduling
resolution for its FCFS delivery.

3. Methodology

In order to analyze the performance @EMA/CD
Ethernets, we used a detailed network simulator[1]. We
chose to use a network simulat@ther thananalytical
methods because tiie known problems with analytical
models of CSMA/CD: overly-pessimistic estimation of
delays at high network loads [17], and simple

approximations of network layouand packet length
distributions. Furthermore, using a network simulator to
analyze the performance of Ethermdiowed us greater
flexibility in setting loads than if we had taken
measurements of a real networkNetwork simulators
have been shown to be highly accurate whesed

video stream is modeled with a packet-train for each
frame[11]. A packet-train is senff 25times a second
and is ofvariable length with a mean of KB. Every
packet, ottrain car, isfull except forthe last and there is
only aminimal delay of 7Qus betweercars, representing
the time required to get the data to the Ethernet

correctly[20]. We have taken great care to use realisticcontroller. The resultingrideo stream is 2.2 Mbps, or

parameters and wehave validated our Ethernet

22% of the available bandwidth. When multipleleo

simulation performance against published measurementstreams aranodeled togetherthe start of theipacket

in [2].
3.1 Simulator methodology

For the simulations in thistudy, a 10 Mbp&thernet
was modeled. The maximumbus length of 2579m was
used for all simulations, with théosts uniformly
distributed along a single cable. The simulatorused
takes into account the position of hosts on lths and
usesthis toaccurately simulate collisions. All simulation
runs included atleast 30,000 packets sewower the
network.

We modeled continuously queued sourcegta
sources,and video sources irthis study. Continuously
gueued sources each havedffiered load close t@00%.
Everytime that acontinuously queued source successfully
transmits a packet it waifsr the 9.6us inter-packet gap
and thenoffers another packet of the same length to the
network.

Data traffichas longoeenthe primaryuse for LAN's.
Numerous measurement studies[2, 8] have shtvan
packet lengths have a primarily bi-modal or multi-modal
distribution. We based odength distribution orthat
measured in Gusella’s study[8].This distribution is
shown in table 3.1. The lengths include thacket
headers, and the average packet length is 649.1 bytes.

Describing the inter-packet arrival times of datfic
is more difficultand anactive area of researchsee for
example theavork in [12] onthe self-similar nature of the
distribution. For our simulations we have used an
exponential distribution for inter-packetrrival times.
Although this is a simplification, it halseen shown to
closely approximate real measuremeratger all but the
shortest time intervals[20].

For our simulations of
Length | Probability | video traffic, we have used a
64 0.304 rough approximation of
144 0.083 MPEG, believing that the
220 0.08 more complex proposed
576 0.1 approaches[14, 23bffer few
1072 0.25 advantages since the small
1500 0.183 increase in accuracy is

achieved at theexpense of

Figure 3.1: Data : . ;
generality. In our simulation a

length distribution

trains is synchronized. Thisproducesthe burstiest
possible combination of the video streams.

3.2 Performance metrics

Performance metrics are defined as functionsffered
load. The individualoffered load foreach station is
calculated byunning thestation by itself on th@etwork
and measuring its throughput. Tleembined offered
load is the summation of the offered loads of each station.

The primary metrics analyzed in this study are:

e Utilization: ~ the actual throughput of théus,
measured by dividing the sum of the lengths of the
packets successfulent (including their headers) by the
amount of time of the simulation. Unlikesome
studies[2], we do not include the inter-packet gap or the
propagation delay in the utilization calculation.

 Average Delay: the average time it takes to send a
packet, measured from the time it arrives at the controller
to the time it issuccessfullysent or is canceled due to 16
collisions. We also calhis statistic theaverage packet
latency. Becausthis study dealsvith the MAC layer, no
concept of higher level buffering was taken into account.

e Standard Deviation of Delay: the standard
deviation of the packet latency.

» Percentage of Starved Packets:the percentage of
packetsthat suffer unacceptable delays or completely
starve out due to 16 collisions. Packibiat areinvolved
in 16 collisions are dropped by the contro@dlost. In
this study, three separate statistics thfis type are
measured: the percentage of packiett suffer delays of
at least 50 ms, the percentage of pacttessuffer delays
of at least 100 msand thepercentage of packethat
starve out completely.

« Stability: if the utilization of thebus decreases as
the offered load increases, the protocol is unstable.

4. The packet starvation effect (PSE)

The packet starvatioeffect(PSE) causes some packets
to experience extremely lorgelaysand some to starve
out due to 16 collisions. Ithis section, we describe the
reasons fothe packet starvatiosffect,and therguantify
the extent of thieffect as a factor of offerddad. We

showthatfor the tested loads, thedfect usuallypecomes
significant starting at aaoffered load of betwee®0% and
70%, andgets worse athe offered load increasemnd as
the number of stations increase. sbhme caseshe effect
is significant at offered loads as low as 40%.

4.1 Explanation of the PSE

The reason for the packet starvation effect is that when
two packets compete for access under CSMA/CD, the
probability of one packet getting access over the other is
approximately proportional to the ratio of their maximum
backoff values. When two packets become ready (due to
new arrival or to the end of a backoff) at approximately
the same time, the two controllers will both wait until

they see that the network is free and then attempt to send

colliding with each other. When this occurs, they both
backoff a random amount based on the number of
collisions (N) that the packet has been a part of. If N is
less than or equal to 10, the backoff is between 0 Bad 2
1. Itis between 0 and 1023 otherwise. The probability
that an older packet selects a smaller backoff value than
newer packet with fewer collisions is less than the ratio of
the newer packet's maximum backoﬂN(Z or 1023)

divided by the older packet's maximum backoff. Because

this value increases exponentially, unless a packet comes

ready when no other host is ready to send, it will usually
either get access to the bus very quickly or it will
experience 16 collisions and starve out. Under high load,
there is usually another packet waiting to send, and so
long delays and packet starvation occurs to a significant
percentage of packets.

We offer an example dhis problem here. Consider
two packets, an old packet whitlascollided three times
and anew packet whiclmas notbeen in a collision. If
thesetwo collide, the old packet (N=Aow) will select a
backoff between @nd 15 and thaew packet (N=1) will
select a backoff betweenahd 1. Theonly case where
the old packet will geaccess beforthe new packet is if
the new packet selectsahd theold packet selects 0,
which has gprobability of 1/32. If they both select the
same value, they will collideand backoff again
(probability 2/32). Otherwisehe new packet gets to
request thebus again beforethe old packefprobability
29/32). Because ofhis effect,the old packet wilusually
keep on backingff until it is theonly packettrying to
accessthe network owntil it starves out after 16
collisions.

4.2 Quantification of the PSE

This section quantifies the packet starvateffect for
three classes of traffic: continuously queued soudzga,

a

a

300
250
200

100

Packet Lakency [mz)

400 600
Packet Num ber

1000

Figure 4.1: Packet Latency for 1000 Video Packets

traffic, and combinations of datandvideo traffic. The
continuously queued sourcewe very similar to the
sources measured in [2], except that the network length of
2759m for our simulations is long#dran the910mused

in thatstudy. This study showedhat while the average
latency scaled pretty much linearly as a function of
offered load fortheir tested cases, thetandard deviation
of latency was at least 2 to 5 timis® mearfor the very
high offered loadghatthey tested. Although we omit the
graphs here, our simulations both agreed with result
and generalized it to the tested datad video sources.
We foundthat thisaverage latency/standard deviation of
latency ratio started sma#ind increased quickly with
offered load. It becamdénigher than 2 abetween 50%
and 65% offered load, and increased to a maximum of
between 4and 5. Theeason forthis extremely high
variance is in large part due to the P9Q#ost packets get
through in a reasonable amount of time, bomne take
extremely long times to get through.

A graphic example of this shown in figure 4.1.This
graphshowsthe simulated packédtency experienced by
the first 1000 consecutive packets from a video hokis
graph is takenfrom a scenario with Js7ideo streams
(offered load65.4%)and 40 datatations (offered load
6.5%) which togethepffer a total load of only71.9%.
The averagéatency forthe packets ithis graph isonly
3.4 msyetthere are numeroysmckets which haveelays
over 100 msand the standardeviation of latency is 12.6
ms.

Figures 4.2 through 4.5 show the percentage of packets
that experience the PSE at three different levels. The
mildest level is packets that experience what we call
partial starvationfor at least 50 ms. These are blocked
from access to the bus for at least 50 ms before they
finally manage to get through, usually because a backoff
ends when no other host is offering a packet. The second
level consists of packets that experience partial starvation
for at least 100 ms, and the final level consists of packets
that completely starve out due to 16 collisions. On
average, it took a starved packet approximately 225 ms
before it finished its 16th collision and starved out, and
this varied all the way from 75 ms to nearly 400 ms.

8% -
| >=S0ms =~ 1526
% 6% + >=100ms
E’ 50 + Starved - 1024
5% |
S 30 &
] 3% =+ 512
£ 2% T , —
g w1 e eene U6
0% +—— - = | |
0% 500% 1000% 1500%
Offered Load

16% T >=100ms
14% 1 Starved
12% 1
10% 1
8% 1
6% T
4% 1
2% T
0% - ‘
0% 50% 100% 150% 200%
Offered Load

Packets Experiencing PSE

Figure 4.2: PSE for Continuously Queued Sources

w 15% - - - >=50ms - - =
o >= 100ms »y === 60
2 Starved
2 10% - e m W om omom
2 40
S
G sy
@ 0 - '-”AZO
g
&
o Q==

40% 60% 80% 100% 120% 140%

Offered Load (%)

Figure 4.3: PSE for 20, 40, and 60 Data Sources

Figure 4.3showsthe same statistidsr 20, 40, and 60
data hosts. Theurves forthe three host configurations
arevery similar, with the PSEBecoming more extreme as
the number of stations increases. Figuresahd 4.5
show the same statistider combined videand data
traffic. For clarity in the graphs, the 50 ms partial
starvation level isiot shown. Theffered load for these
graphs consists of between Bnd 5video streams,

Figure 4.4: PSE for Video Packets,Combined Loads

20% >= 100ms

w Starved

£ 15% - /\/\/\ﬁ\//\/\

j=2]

£

o

5 10% +

g

I 5% +

§%)

£

3 % ‘ 1 : |
0% 50% 100% 150% 200%

Offered Load

Figure 4.5: PSE for Data Packets, Combined Loads

load was increase in increments of approximalebfo,
which bounds the accuracy of the figures.

From this table, we can drasomegeneralizations for
some sample scenarios. To suppdrard" real-time
traffic, which can notfford to experience any losses or
delays above 50 mand which conforms to our data
model, a CSMA/CD busnust berun atsomethingless
than 40% load. As shown by the continuous queuing

combined with data traffic from 40 hosts added in roughly tests (see Figurd.2) this number willdecrease as the

6% increments.

The tested datand combined loads have between 3%
and15% of theirpackets completely starve outadtered
loads muchabovel100%. This indicateshat Ethernets
should not bellowed toreach 100%offeredload, even
for short periods of time.

A critical question is at what level dfffered load a
CSMA/CD LAN can runbefore an unacceptablgortion
of its packetstart experiencing unacceptaldeels of the
PSE. Figure 4.6 answers thipiestion forthe loads
tested, fothe thredevels of packet starvaticgffect, and
for differing percentages of packdtsat experiencethat
effect. This table lists theminimum offered loadthat
produceghe giverevel of PSE in at least 0.01%, 0.1%,

average packet length increasmsd as the number of
sources increases. A second scenariotiseifnetwork is

to be used primarily for TCP/IBata traffic such afile
transfers across a connected WAN. this case, having
more than 1% of thepackets experience 100ndelays

will greatly degrade the performance of these streams
because of the Van Jacobson congestion caaigotithm
[10]. This algorithm assumes that all dropped packets are
due to congestiorand will reduce thewindow size to 1
packet. For the tested traffic patternBis occurs at
around 75% offered load. The final case is the
combination of compressed videstreams with data
traffic. If differencing based compression is ugéeén it

is not acceptable to haveven 0.1% ofthe packets

and 1% of theackets sent. The table entries marked asexperience 50 ms delay, which occurs at 69% with one

“All” indicate that all offered loads fothat number of
ideo streams producdie given PSHevel. The offered

video stream and a65% withtwo videostreams. This
case is most similar to thgpes of traffic we expect to see
in the future.

PSE >=0.01 % PSE >=0.1% PSE >= 1%
Sources >=50 | >=100 | Starved | >=50 | >=100 | Starved | >=50| >=100| Starved
20 Data 43 % 49 % 69% | 53% 62 % 2% 71% 76 % 86 %
40 Data 40 % 52 % 66% | 52% 60 % 2% | 66% 2% 83 %
60 Data 37 % 49 % 62% | 50% 59 % 4% | 68% 5% 80 %
1Vid, 40 Data (Video) | 55% 69 % 80% | 69% 5% 84% | 81% 88 % 101 %
2 Vid, 40 Data (Video) | 48 % 60 % 9% | 65% 2% 8l% | 771% 85 % 105 %
3 Vid, 40 Data (Video) All All 70 % All All 80%] 68% 80 % 94 %
4 Vid, 40 Data (Video) All All All All All All All 88 % 94 %
1 Vid, 40 Data(Data) All 45 % 66% | 51% 57 % 1% | 66% 1% 81 %
2 Vid, 40 Data(Data) All All 60% | 48% 54 % 1% | 65% 1% 81 %
3 Vid, 40 Data(Data) All All All All All 74 % All 70 % 84 %
4 Vid, 40 Data(Data) All All All All All All All All All
Figure 4.6: PSE threshold levels in terms of offered load
to send.
5. The Fair Dual Distributed Queue algorithm
5.1 Slots

The Fair Dual DistributedQueue (FDDQ)algorithm
remedies the problentiat CSMA/CD has by providing
two-priority FCFS scheduling of packet deliveryhis is
done by usingslots to maintaintwo globallydistributed
gueues of waiting senders acrdhe bus, onéor high
priority (real-time) traffic and one forlow priority

During congested modehe FDDQ algorithm makes
use ofslots (also known as mini-slots in some of the
literature) toconveyinformation to all of thecontrollers
on the bus. A slotonveyswhether 0, 1, or more senders
are waiting to send. A sldias thevalue of eithelEmpty

(datagram) traffic. Each position in one of the queues is(E), High Priority (H),Low Priority (L), or Collision (C).

termed abuckef andmay have 0, 1, or more members.
Under low load, senders usehe samgolicy as
CSMA/CD--they waituntil they seethat thenetwork is
empty and then attempt t®end theirpacket. When a
collision occurs, the controllers declatet thenetwork

is now congestednd allpackets must get a place in one
of the distributed queuesefore theycan be sent. By

There argwo types of slotserdering slotsand collision
resolution slots

During thecongested mode, one ordering dhitows
each packethat is sent.Controllers cameserve space in
the distributed quees by sending a 3%ste packet at the
beginning of an ordering slot. Thigcket consists of the
14 byteEthernet headdbllowed by 21 bytes oéither all

monitoring the network, each controller keeps track of the O's for ahigh priority packet orall 1'sfor a lowpriority

bucketsthat currently exist,and which buckets it has
packetsin. Thetop bucketis defined as the firdiucket
in the highpriority queue if one existgnd as thdirst
bucket inthe low priority queue otherwise. Only the
packetsthat are in thdop bucketare allowed to attempt

A Min Prop B

Sends Space A->B Sends Ethemet
(Bytes) 12 0t029 64101526

A Min Empty Space Prop B Empty

Sends Space A->B Sends Slot
(Bytes) 12 64 0-29 64 - 1526

A Min Prop B Prop Min C Full

Sends Space A->B Sends B->C Space Sends Slot
(Bytes) 12 0-29 35 0-29 12 64 - 1526

A Min Prop A->B Collision Prop Min C Collision

Sends Space & B Sends & JAM B->C Space Sends Slot
(Bytes) 12 0-29 6 0-29 12 64-1526
Figure 5.1: FDDQ Slots

packet. If a collision is detected, a JAM signal is sent out,
in exactlythe samavay as it isdone in the IEEE 802.3
standards.Because sendecanonly start sending at the
beginning of an ordering slot, the minimum leng#tket
used in these slots is reduced frohe CSMA/CD 64
bytes to 35 bytes.

Zero or more collision resolution slots precede each
packetthat is sent. These araused to resolvéhe cases
where the topfpucket doesiot containexactly one sender.

If there are nopackets inthis bucket, an empty event
occurs inthe slot,and if there aréoo many packets a
collision event occurs.

The overall cost of each slot depends on a number of
factors and varies between 18 and 72 bytes. Figure 5.1
illustrates this cost. The first diagram shows two
successful sends in a row on a standard Ethernet. The
minimum space between packets and the propagation
delay between senders always occur between two sends,
and so are not considered as part of the cost of a slot. The
second diagram shows an empty slot. Each controller

