
The Packet Starvation Effect in CSMA/CD LANs and a Solution
Brian Whetten, Stephen Steinberg, Domenico Ferrari

University of California at Berkeley

Abstract
In this paper we explore the packet starvation effect (PSE) that occurs in Ethernet controllers due to the unfairness of

the CSMA/CD algorithm. The PSE causes some packets to experience latencies up to 100 times the average or to
completely starve out due to 16 collisions. The PSE causes some packets to experience high delays at realistic offered
loads as low as 40% and causes complete starvation of some packets at offered loads as low as 60%. The PSE makes
CSMA/CD LANs unsuitable for real-time traffic except at offered loads much less than 100%. It is the limiting factor in
the usable bandwidth of the bus.

As an alternative to CSMA/CD, we present the Fair Dual Distributed Queue (FDDQ) algorithm. Under high load,
FDDQ uses a single reservation mini-slot per packet and a tree-based collision resolution algorithm (CRA) to maintain
two distributed queues of waiting senders. This provides two priority FCFS access to the network. FDDQ provides
utilizations and average latencies very similar to those of CSMA/CD but is fair even at extremely high offered loads. The
protocol is stable for a constant number of senders, is simple enough to be practical, should be implementable in
firmware, and completely eliminates the PSE.

1. Introduction

Much literature has been devoted to the study of the
CSMA/CD algorithm for collision resolution, but most of
it has concentrated on the stability of the algorithm, the
average fairness of it and the average delay and
utilization it can provide. These papers have shown that
while CSMA/CD is unstable at offered loads much higher
than 100% and with small packets[5], in practice it can
achieve utilizations in the range of 90-97%[2]. This
contradicts the conventional wisdom of network
administrators, which holds that Ethernet LANs[15] (as
defined by the IEEE 802.3 standards) behave very badly
at offered loads much higher than 50%. Part of this
problem is due to errors in Ethernet implementations, but
the majority of the problem is due to the inherent
unfairness of CSMA/CD.

We used an accurate Ethernet simulator to quantify the
unfairness of CSMA/CD for a range of realistic offered
loads. We tested loads similar to the continuous queue
model used for the measurements published by Boggs,
Mogul and Kent[2], a data traffic model based on the
measurements by Gusella[8] and a combination of this
data traffic with loads designed to model MPEG video
streams.

For the simulated loads, the standard deviation of
packet latency is often two to five times the average
latency, and at offered loads above 60%-70% a significant
portion of packets starve out and never gain access to the

network. We term this the packet starvation effect (PSE),
and it occurs because packets have a probability of getting
access to the network inversely proportional to their
current backoff value. When a new packet competes with
an old one, the newer packet has a higher probability of
gaining access and the probability of the older packet
winning a competition for access exponentially decreases
with the number of failed attempts the old packet
participates in. At high load, when there are usually two
or more packets in contention for the network, this effect
causes a significant portion of packets to experience
excessive delays or to be dropped after 16 failed
retransmission attempts.

While the PSE has not been much of a problem in the
past (as shown by the overwhelming success of the
Ethernet) it is becoming a problem for modern traffic
mixes which require higher bandwidths and real-time
assurances on packet latency. In addition, the PSE
completely disallows the use of admission control
schemes, such as that described by Ferrari[6], which
provide real-time traffic guarantees.

While the simulations in this paper have been based on
the 10Base5 and 10Base2 versions of the IEEE 802.3
standard, the results of this paper should also be
applicable to the 10BaseT standard, although the different
topology of 10BaseT will result in different collision
patterns and may change the results slightly. In addition,
because the emerging 100 Mbps 802.3 standards
(100BaseT, etc.) are designed to be virtually identical to

the 10BaseT standard when viewed from the MAC layer,
these results should apply to these new standards as well.

Since real-time traffic is the primary driving force
behind faster LANs, we suggest that the MAC layer
should be considered carefully. The IEEE 802.12
committee is working on the 100BaseVG standard which
solves these problems. As an alternative to reworking the
entire standard, we propose a new MAC scheme called
the Fair Dual Distributed Queue (FDDQ) algorithm.
FDDQ is simple enough to be easily implemented in
firmware as an alternative to CSMA/CD, provides two
priority FCFS access to the LAN, is stable for constant
numbers of senders, and provides utilization and average
delays very close to CSMA/CD. By removing the packet
starvation effect, it will allow LANs to be run at up to
95% utilization as opposed to the 60% to 70% the PSE
limits current Ethernets to.

FDDQ is one of a class of Collision Resolution
Algorithms (CRAs) that relies on all controllers keeping
track of the current state of the network. FDDQ provides
two priority FCFS access to the network by maintaining
two globally distributed queues of waiting senders across
the controllers. FDDQ works like CSMA/CD until a
collision occurs, at which time all sites note that the
network is congested, enter congested mode, and create
two buckets of senders, one on each queue. The senders
who were involved in the collision put their packets into a
bucket, and only attempt to send that packet when their
bucket comes to the top of the highest priority non-empty
queue. Each packet sent while in congested mode is
succeeded by an ordering slot. Hosts reserve spots in the
distributed queues by sending 35 byte ordering packets in
these ordering slots.

When multiple packets occur in the same bucket, a
CRA with the same effect as the tree-based Capetanakis
algorithm[4] is used to arbitrate between them. This
algorithm repeatedly divides the top bucket into two
buckets, with each host that was in that bucket randomly
choosing one of the new buckets until there is only a
single sender in each bucket.

Section 2 describes previous work. Section 3 describes
the simulator methodology used in the study and the
metrics used. Section 4 describes and quantifies the
packet starvation effect, and Section 5 presents the Fair
Dual Distributed Queue algorithm. Finally, Section 6
compares FDDQ to CSMA/CD, and Section 7 draws
some conclusions.

2. Previous work

A large number of papers have been written on the
analysis, simulation, and measurement of the CSMA/CD
algorithm. Boggs et al. provides a representative

overview of these papers[2]. While some of these papers
point out that at high loads the standard deviation of
packet latency is two to five times that of the average, and
Bux[3] shows that Ethernets are not as suitable for real
time traffic as token ring LANs, we are not aware of any
papers that explain and analyze the packet starvation
effect. Nichols[17] analyzes the suitability of Ethernets
for real-time video traffic, and concludes that it is suitable
only up to an offered load of 60%, which agrees with our
conclusions.

At least as many papers have been published on
collision resolution algorithms (CRAs) for broadcast
channels. Like FDDQ, almost all of these algorithms
have the controllers monitor the network constantly to
provide better collision resolution behavior. The first of
this class of algorithms was published in 1977. It is the
tree-based collision scheme of Capetanakis[4]. It was
followed up with improved variations by Massey[13] and
Gallager, Tsybakov, and Mikhailov [7, 21]. All of these
algorithms assume a fully slotted network with fixed
packet lengths, where the cost of a collision is equal to
that of a packet send. While some of these algorithms
claim FCFS scheduling, they only divide the senders into
the group of senders currently being resolved and the
waiting senders. Since the current group of senders can
be large, this greatly limits the scheduling resolution of
their FCFS access. Some protocols have been proposed
which use "control minislots" (CMS) to provide better
utilization bounds, including the announced arrival
random access protocols[18] and a distributed queuing
algorithm[22]. These protocols involve having senders
announce their arrival in one of a series of minislots
before they can send, similar to the single ordering slot
used by FDDQ. They both assume that the length of the
minislots is very small compared to the length of a data
packet, and so typically use 3 or more minislots per
packet send. This is too expensive for LANs such as the
Ethernet. The distributed queuing algorithm is similar to
FDDQ in many regards, but it uses three minislots to
achieve stability and stops using the minislots for
ordering while the top group of senders in the queue is
being resolved. Because of this, it is less efficient for
LANs than is FDDQ, and it has a lower scheduling
resolution for its FCFS delivery.

3. Methodology

In order to analyze the performance of CSMA/CD
Ethernets, we used a detailed network simulator[1]. We
chose to use a network simulator rather than analytical
methods because of the known problems with analytical
models of CSMA/CD: overly-pessimistic estimation of
delays at high network loads [17], and simple

approximations of network layout and packet length
distributions. Furthermore, using a network simulator to
analyze the performance of Ethernet allowed us greater
flexibility in setting loads than if we had taken
measurements of a real network. Network simulators
have been shown to be highly accurate when used
correctly[20]. We have taken great care to use realistic
parameters and we have validated our Ethernet
simulation performance against published measurements
in [2].

3.1 Simulator methodology

For the simulations in this study, a 10 Mbps Ethernet
was modeled. The maximum bus length of 2579m was
used for all simulations, with the hosts uniformly
distributed along a single cable. The simulator we used
takes into account the position of hosts on the bus and
uses this to accurately simulate collisions. All simulation
runs included at least 30,000 packets sent over the
network.

We modeled continuously queued sources, data
sources, and video sources in this study. Continuously
queued sources each have an offered load close to 100%.
Every time that a continuously queued source successfully
transmits a packet it waits for the 9.6 µs inter-packet gap
and then offers another packet of the same length to the
network.

Data traffic has long been the primary use for LAN's.
Numerous measurement studies[2, 8] have shown that
packet lengths have a primarily bi-modal or multi-modal
distribution. We based our length distribution on that
measured in Gusella’s study[8]. This distribution is
shown in table 3.1. The lengths include the packet
headers, and the average packet length is 649.1 bytes.

Describing the inter-packet arrival times of data traffic
is more difficult and an active area of research; see for
example the work in [12] on the self-similar nature of the
distribution. For our simulations we have used an
exponential distribution for inter-packet arrival times.
Although this is a simplification, it has been shown to
closely approximate real measurements over all but the
shortest time intervals[20].

For our simulations of
video traffic, we have used a
rough approximation of
MPEG, believing that the
more complex proposed
approaches[14, 23] offer few
advantages since the small
increase in accuracy is
achieved at the expense of
generality. In our simulation a

video stream is modeled with a packet-train for each
frame[11]. A packet-train is sent off 25 times a second
and is of variable length with a mean of 11 KB. Every
packet, or train car, is full except for the last and there is
only a minimal delay of 70µs between cars, representing
the time required to get the data to the Ethernet
controller. The resulting video stream is 2.2 Mbps, or
22% of the available bandwidth. When multiple video
streams are modeled together, the start of their packet
trains is synchronized. This produces the burstiest
possible combination of the video streams.

3.2 Performance metrics

Performance metrics are defined as functions of offered
load. The individual offered load for each station is
calculated by running the station by itself on the network
and measuring its throughput. The combined offered
load is the summation of the offered loads of each station.

The primary metrics analyzed in this study are:
•• Utilization: the actual throughput of the bus,

measured by dividing the sum of the lengths of the
packets successfully sent (including their headers) by the
amount of time of the simulation. Unlike some
studies[2], we do not include the inter-packet gap or the
propagation delay in the utilization calculation.

•• Average Delay: the average time it takes to send a
packet, measured from the time it arrives at the controller
to the time it is successfully sent or is canceled due to 16
collisions. We also call this statistic the average packet
latency. Because this study deals with the MAC layer, no
concept of higher level buffering was taken into account.

•• Standard Deviation of Delay: the standard
deviation of the packet latency.

•• Percentage of Starved Packets: the percentage of
packets that suffer unacceptable delays or completely
starve out due to 16 collisions. Packets that are involved
in 16 collisions are dropped by the controller and lost. In
this study, three separate statistics of this type are
measured: the percentage of packets that suffer delays of
at least 50 ms, the percentage of packets that suffer delays
of at least 100 ms, and the percentage of packets that
starve out completely.

•• Stability: if the utilization of the bus decreases as
the offered load increases, the protocol is unstable.

4. The packet starvation effect (PSE)

The packet starvation effect (PSE) causes some packets
to experience extremely long delays and some to starve
out due to 16 collisions. In this section, we describe the
reasons for the packet starvation effect, and then quantify
the extent of this effect as a factor of offered load. We

Length Probability
64 0.304
144 0.083
220 0.08
576 0.1
1072 0.25
1500 0.183
Figure 3.1: Data
length distribution
Di ib i f d

show that for the tested loads, the effect usually becomes
significant starting at an offered load of between 60% and
70%, and gets worse as the offered load increases and as
the number of stations increase. In some cases, the effect
is significant at offered loads as low as 40%.

4.1 Explanation of the PSE

The reason for the packet starvation effect is that when
two packets compete for access under CSMA/CD, the
probability of one packet getting access over the other is
approximately proportional to the ratio of their maximum
backoff values. When two packets become ready (due to a
new arrival or to the end of a backoff) at approximately
the same time, the two controllers will both wait until
they see that the network is free and then attempt to send,
colliding with each other. When this occurs, they both
backoff a random amount based on the number of
collisions (N) that the packet has been a part of. If N is
less than or equal to 10, the backoff is between 0 and 2N-
1. It is between 0 and 1023 otherwise. The probability
that an older packet selects a smaller backoff value than a
newer packet with fewer collisions is less than the ratio of
the newer packet's maximum backoff (2N-1 or 1023)
divided by the older packet's maximum backoff. Because
this value increases exponentially, unless a packet comes
ready when no other host is ready to send, it will usually
either get access to the bus very quickly or it will
experience 16 collisions and starve out. Under high load,
there is usually another packet waiting to send, and so
long delays and packet starvation occurs to a significant
percentage of packets.

We offer an example of this problem here. Consider
two packets, an old packet which has collided three times
and a new packet which has not been in a collision. If
these two collide, the old packet (N=4 now) will select a
backoff between 0 and 15 and the new packet (N=1) will
select a backoff between 0 and 1. The only case where
the old packet will get access before the new packet is if
the new packet selects 1 and the old packet selects 0,
which has a probability of 1/32. If they both select the
same value, they will collide and backoff again
(probability 2/32). Otherwise the new packet gets to
request the bus again before the old packet (probability
29/32). Because of this effect, the old packet will usually
keep on backing off until it is the only packet trying to
access the network or until it starves out after 16
collisions.

4.2 Quantification of the PSE

This section quantifies the packet starvation effect for
three classes of traffic: continuously queued sources, data

traffic, and combinations of data and video traffic. The
continuously queued sources are very similar to the
sources measured in [2], except that the network length of
2759m for our simulations is longer than the 910m used
in that study. This study showed that while the average
latency scaled pretty much linearly as a function of
offered load for their tested cases, the standard deviation
of latency was at least 2 to 5 times the mean for the very
high offered loads that they tested. Although we omit the
graphs here, our simulations both agreed with this result
and generalized it to the tested data and video sources.
We found that this average latency/standard deviation of
latency ratio started small and increased quickly with
offered load. It became higher than 2 at between 50%
and 65% offered load, and increased to a maximum of
between 4 and 5. The reason for this extremely high
variance is in large part due to the PSE. Most packets get
through in a reasonable amount of time, but some take
extremely long times to get through.

A graphic example of this is shown in figure 4.1. This
graph shows the simulated packet latency experienced by
the first 1000 consecutive packets from a video host. This
graph is taken from a scenario with 3 video streams
(offered load 65.4%) and 40 data stations (offered load
6.5%) which together offer a total load of only 71.9%.
The average latency for the packets in this graph is only
3.4 ms, yet there are numerous packets which have delays
over 100 ms and the standard deviation of latency is 12.6
ms.
Figures 4.2 through 4.5 show the percentage of packets
that experience the PSE at three different levels. The
mildest level is packets that experience what we call
partial starvation for at least 50 ms. These are blocked
from access to the bus for at least 50 ms before they
finally manage to get through, usually because a backoff
ends when no other host is offering a packet. The second
level consists of packets that experience partial starvation
for at least 100 ms, and the final level consists of packets
that completely starve out due to 16 collisions. On
average, it took a starved packet approximately 225 ms
before it finished its 16th collision and starved out, and
this varied all the way from 75 ms to nearly 400 ms.

Packet Num ber

0

50

100

150

200

250

300

0 200 400 600 800 1000

Figure 4.1: Packet Latency for 1000 Video Packets

Figure 4.3 shows the same statistics for 20, 40, and 60
data hosts. The curves for the three host configurations
are very similar, with the PSE becoming more extreme as
the number of stations increases. Figures 4.4 and 4.5
show the same statistics for combined video and data
traffic. For clarity in the graphs, the 50 ms partial
starvation level is not shown. The offered load for these
graphs consists of between 1 and 5 video streams,
combined with data traffic from 40 hosts added in roughly
6% increments.

The tested data and combined loads have between 3%
and 15% of their packets completely starve out at offered
loads much above 100%. This indicates that Ethernets
should not be allowed to reach 100% offered load, even
for short periods of time.

A critical question is at what level of offered load a
CSMA/CD LAN can run before an unacceptable portion
of its packets start experiencing unacceptable levels of the
PSE. Figure 4.6 answers this question for the loads
tested, for the three levels of packet starvation effect, and
for differing percentages of packets that experience that
effect. This table lists the minimum offered load that
produces the given level of PSE in at least 0.01%, 0.1%,
and 1% of the packets sent. The table entries marked as
“All” indicate that all offered loads for that number of
ideo streams produces the given PSE level. The offered

load was increase in increments of approximately 1.5%,
which bounds the accuracy of the figures.

From this table, we can draw some generalizations for
some sample scenarios. To support "hard" real-time
traffic, which can not afford to experience any losses or
delays above 50 ms and which conforms to our data
model, a CSMA/CD bus must be run at something less
than 40% load. As shown by the continuous queuing
tests (see Figure 4.2) this number will decrease as the
average packet length increases and as the number of
sources increases. A second scenario is if the network is
to be used primarily for TCP/IP data traffic such as file
transfers across a connected WAN. In this case, having
more than 1% of the packets experience 100ms delays
will greatly degrade the performance of these streams
because of the Van Jacobson congestion control algorithm
[10]. This algorithm assumes that all dropped packets are
due to congestion, and will reduce the window size to 1
packet. For the tested traffic patterns, this occurs at
around 75% offered load. The final case is the
combination of compressed video streams with data
traffic. If differencing based compression is used, then it
is not acceptable to have even 0.1% of the packets
experience 50 ms delay, which occurs at 69% with one
video stream and at 65% with two video streams. This
case is most similar to the types of traffic we expect to see
in the future.

>= 100ms Latency

Starved Out

Offered Load

Pa
ck

et
s

Ex
pe

rie
nc

in
g

PS
E

0%
2%
4%
6%
8%

10%
12%
14%
16%

0% 50% 100% 150% 200%

Figure 4.4: PSE for Video Packets,Combined Loads

O f f e r e d L o a d

Pa
ck

et
s

Ex
pe

rie
nc

in
g

PS
E

0 %

5 %

1 0 %

1 5 %

2 0 %

0 % 5 0 % 1 0 0 % 1 5 0 % 2 0 0 %

Figure 4.5: PSE for Data Packets, Combined Loads

Offered Load

Pa
ck

et
s

Ex
pe

rie
nc

in
g

PS
E

0%

1%

2%

3%

4%

5%

6%

7%

8%

0% 500% 1000% 1500%

1526

1024

512

256

Figure 4.2: PSE for Continuously Queued Sources

Offered Load (%)

Pa
ck

et
s

Ex
pe

rie
nc

in
g

PS
E

0%

5%

10%

15%

40% 60% 80% 100% 120% 140%

60

40

20

Figure 4.3: PSE for 20, 40, and 60 Data Sources

>= 100ms

Starved

>= 50ms

>= 100ms

Starved

>= 50ms >= 100ms

Starved

>= 100ms

Starved

PSE >= 0.01 % PSE >= 0.1% PSE >= 1%
Sources >=50 >=100 Starved >=50 >=100 Starved >=50 >=100 Starved
20 Data 43 % 49 % 69 % 53 % 62 % 72 % 71 % 76 % 86 %
40 Data 40 % 52 % 66 % 52 % 60 % 72 % 66 % 72 % 83 %
60 Data 37 % 49 % 62 % 50 % 59 % 74 % 68 % 75 % 80 %
1 Vid, 40 Data (Video) 55 % 69 % 80 % 69 % 75 % 84 % 81 % 88 % 101 %
2 Vid, 40 Data (Video) 48 % 60 % 79 % 65 % 72 % 81 % 77 % 85 % 105 %
3 Vid, 40 Data (Video) All All 70 % All All 80 % 68 % 80 % 94 %
4 Vid, 40 Data (Video) All All All All All All All 88 % 94 %
1 Vid, 40 Data(Data) All 45 % 66 % 51 % 57 % 71 % 66 % 71 % 81 %
2 Vid, 40 Data(Data) All All 60 % 48 % 54 % 71 % 65 % 71 % 81 %
3 Vid, 40 Data(Data) All All All All All 74 % All 70 % 84 %
4 Vid, 40 Data(Data) All All All All All All All All All

Figure 4.6: PSE threshold levels in terms of offered load

5. The Fair Dual Distributed Queue algorithm

The Fair Dual Distributed Queue (FDDQ) algorithm
remedies the problems that CSMA/CD has by providing
two-priority FCFS scheduling of packet delivery. This is
done by using slots to maintain two globally distributed
queues of waiting senders across the bus, one for high
priority (real-time) traffic and one for low priority
(datagram) traffic. Each position in one of the queues is
termed a bucket, and may have 0, 1, or more members.
Under low load, senders use the same policy as
CSMA/CD--they wait until they see that the network is
empty and then attempt to send their packet. When a
collision occurs, the controllers declare that the network
is now congested, and all packets must get a place in one
of the distributed queues before they can be sent. By
monitoring the network, each controller keeps track of the
buckets that currently exist, and which buckets it has
packets in. The top bucket is defined as the first bucket
in the high priority queue if one exists, and as the first
bucket in the low priority queue otherwise. Only the
packets that are in the top bucket are allowed to attempt

to send.

5.1 Slots

During congested mode, the FDDQ algorithm makes
use of slots (also known as mini-slots in some of the
literature) to convey information to all of the controllers
on the bus. A slot conveys whether 0, 1, or more senders
are waiting to send. A slot has the value of either Empty
(E), High Priority (H), Low Priority (L), or Collision (C).
There are two types of slots--ordering slots and collision
resolution slots.

During the congested mode, one ordering slot follows
each packet that is sent. Controllers can reserve space in
the distributed queues by sending a 35 byte packet at the
beginning of an ordering slot. This packet consists of the
14 byte Ethernet header followed by 21 bytes of either all
0's for a high priority packet or all 1's for a low priority
packet. If a collision is detected, a JAM signal is sent out,
in exactly the same way as it is done in the IEEE 802.3
standards. Because senders can only start sending at the
beginning of an ordering slot, the minimum length packet
used in these slots is reduced from the CSMA/CD 64
bytes to 35 bytes.

Zero or more collision resolution slots precede each
packet that is sent. These are used to resolve the cases
where the top bucket does not contain exactly one sender.
If there are no packets in this bucket, an empty event
occurs in the slot, and if there are too many packets a
collision event occurs.
The overall cost of each slot depends on a number of
factors and varies between 18 and 72 bytes. Figure 5.1
illustrates this cost. The first diagram shows two
successful sends in a row on a standard Ethernet. The
minimum space between packets and the propagation
delay between senders always occur between two sends,
and so are not considered as part of the cost of a slot. The
second diagram shows an empty slot. Each controller

Sends
MinA
Space

Prop
A->B

B
Sends

12 0 to 29(Bytes) 64 to 1526

Sends
MinA
Space

12(Bytes)

Prop
A->B

B
Sends

0 - 29 64 - 1526

Empty Space

64

Empty
Slot

Sends
A

Space
Min

12(Bytes)

B
Sends

Prop
A->B

0 - 29 64 - 152635

Prop
B->C

0 - 29

Space
Min

12

C
Sends

Full
Slot

Ethernet

Sends
A

Space
Min

12(Bytes)

Prop A->B
& B Sends

0 - 29 64 - 1526

Prop
B->C

0 - 29

C
Sends

Collision
Slot

Collision
& JAM

6

Space
Min

12

Figure 5.1: FDDQ Slots

