Overview

Software implementation of pairings at the Optimization and protocol issues for pairings over supersingular
128-bit security level curves, in particular for the genus-2 case.

1. Structure of pairings over (hyper)elliptic curves.

2. Eta pairing.
Darrel Hankerson, Auburn University a pairing

(with D. Aranha, S. Chatterjee, J. Lépez, A. Menezes) 3. Hardware characteristic 2 multiplier. Parallelization for a
single paring.
4. Genus-2 supersingular curve.

ECC, October 2010 5. BLS signature scheme with the genus-2 curve.
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Pairings from Elliptic Curves Miller's Algorithm for Computing t(P, Q)
Let n = 2;1:0 ni2'.
Let E be an elliptic curve defined over IF,,. 1. Set f — 1, R~ P.
> Let n~ g be a prime divisor of #E(F) with gcd(n, g) = 1. 2. For i from d down to 0 do: _
> Let k be the smallest positive integer with n | gk —1, and 21 hsz ihbrzlfgl? ;aRngent Tipe Stz (% el e 7 (03 s e
suppose that k > 1. Then E[n] C E(F ). 99 R 2R '
> Let G1 be the order-n subgroup of Fyx. 23 f— 2 4Q)/v(Q).
2.4 If n; =1 then
The (reduced/restricted) Tate pairing is 2.4.1 Let ¢ be the line through R and P and let v be the vertical
line through R + P.
. 242 R+— R+ P.
oo Bl )< ] o 243 f — f-4(Q)/v(Q).
defined by 3. Return £(@“~1)/n,
t(P, Q)= fn,P(Q)(qkfl)/n Optimizations
where f, p is a Miller function with divisor n(P) — n(co). 1. Improve the arithmetic in the main loop. Parallelize.

2. Reduce the number of iterations.
3. Improve the arithmetic in the final exponentiation.
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Symmetric Pairings Eta Pairing (k = 4)

Barreto, Galbraith, O’ hEigeartaigh, Scott
Let Gy = Gy = E(Fq)[n]. [ i igeartaig ]

2 _y3
» Let ® be an endomorphism on E with ®(Gy1) # Gj. E/F2: Y +Y=X"+X
> e:G1 x G — G defined by N = #E(Fym) =2m —2m* /2 4 1 ;=3 (mod 8).
e(P, Q) = t(P,d(Q)) » Doubling is cheap: [2](x,y) = (x?,y? + 1).

» Distortion map:

Foem = Fom[u] /(v + u+1), Fasm = Foem[v]/(v? + v + u)
Most pairing-based protocols can be implemented with symmetric O(x,y) = (x + P,y + ux + v).
pairings. For the 128-bit security level: > Pairing: Let P, @ € E(Fan). Then

is a symmetric (Type 1) pairing.

k Curve Bitlength of F g« n(P,Q) = fT7p(¢(Q))M
2 Y% =X3+ aX/Fpis36 3072 where
4 Y24Y=X3+ X [Fopr223 4892 T — p(m+1)/2
6 Y2=X3-X+1/F 4840
+ 1/ M= (2" —1)/N = (27 + 20m+D)/2 | 1)(22m 1)
» n(P, Q) is a fixed power of the Tate pairing.
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Computing n(P, Q) Genus-2 Supersingular Curve
[Barreto, Galbraith, O’ hEigeartaigh, Scott]
Input: P = (X]_,yl), Q = (X2,y2) € E(Fzm) C/FQ . Y2 LY = X5 +X3 + b.
1. z+— x; +1.

2. f—z-(xaat+x+)+n+y+(z+x)u+v.

3. For i from 1 to (m +1)/2 do: > Degree zero divisor class group Jc(Fgq), g = 2.
31 z < x1, x1 — /X1, Y1 — \/¥1. » Reduced divisors:
32 g—z-(atx)tyntyt+txat+lt(z+x)utv. Degenerate: (P) — (00), P € C(Fy).
2431 fef & ) Non-degenerate: (P1) + (P2) — 2(o0)
4 x (2)2?"'_}1/2)(2mi/;(.m+1)/2+1) Type A: Py, P> € C(Fg) \ {00}
4. Return f : Type B: Py € C(Fp)\ C(Fy), P, = 7(P1).
Cost estimate: 7 - (m + 1)/2 multiplications in Fom. 2 WU rep:2a, b& Bl el < etesle)) < 2
> #Jc(Fq) ~q°-.
» Embedding degree is k = 12 (#Jc(Fg2) | ¢** — 1).



Symmetric Pairings Eta Pairing on Degenerate Divisors

For the 128-bit security level: > Octupling is cheap: If P = (x,y) € C(Fg), then
k Curve Bitlength of IFg« 8((P) — (00)) = (P') = ()
2 Y2 = X3 = aX/IE‘p1536 3072 ’ 64 64 128
4 Y24+ Y = X34 X/Foys 4892 WIS (21 (B A Mgy = S )
2 _ w3 _
6 Y°=X"—X+1/Fsns 600 » Eta pairing: D; = (P;) — (00). 1n(D1, D2) is a fixed power of
12 Y24 Y = X%+ X3/Fpo 5268

the Tate pairing.

k = 12 gives relatively small base field. » Cost estimate: 69 - (m — 1)/2 multiplications in Fam.
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Eta Pairing on General Divisors Timings
1. If Dy is degenerate and Dy = (P1) + (P2) — 2(c0) is Type A
non-degenerate, then [Barreto, Galbraith, o} héigeartaigh, Scott, 2007]
1(Dy, D2) = n(Dy, (P1) — (00)) - n(D1, (P2) — (c0)). Timings (in milliseconds) for the eta pairing at the “1230-bit

) i ) security level” on a 3 GHz Intel Pentium 4:
2. If Dy is degenerate (and fixed) and D, is Type B

non-degenerate, then find a (small) integer ¢ such that Curve Pairing
D} = D> + cD; is Type A. Then E (Fp307) 3.50
E(F3w7) 5.36
n(D1, Do) = n(D1, D3)/n(D1, D1)". C(IF2ws) degenerate 1.87
C(F2ws) non-degenerate  6.42

(1 and 2 not necessarily fastest [Aranha, Beuchat, Detrey,
Estibals], but can use common code.)

Multiplication in Fp103 exploited 128-bit SIMD registers. Other
3. For the general case, Lee & Lee give an alg for n(Dy, D») fields used only 32-bit registers.

using resultant. Cost estimate from mult counts gives factor 4
over degenerate-degenerate case.
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Timings at 128-bit security level

Timings (in clock cycles) for the eta pairing at the 128-bit security
level on an Intel Core2.

Number of Pairing
Curve field mults (108 cycles)
E/]F21223 4,284 19.0
E /F3s00 3,570 15.8
C/Fp439 (degenerate divisors) 15,111 16.4
E/F,,., (BN?) 15,003 10
E/F e (BNP) 4.5
E/F,,. (BN°) 12,785 3.3

?R-ate via MIRACL, 2008
bNaehrig, Niederhagen, Schwabe
“Beuchat, Diaz, Mitsunari, Okamoto, Rodriguez-Henriquez, Teruya
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Developments favoring small characteristic

Hardware char 2 multiplier (Intel Core i5, 2009) Pre-release
speculation: should give factor > 2 accel in field mult against
methods relying on lookup with a few bits.

» Gueron and Kounavis [2008], estimates for point mult on
NIST random curve over Fa23s (B-233):

Method acceleration
OpenSSL 0.57X
OpenSSL with enhancements 1X
...and 9-clock HW multiplier 12X
...and 3-clock HW multiplier 37X

» Aranha, Rodriguez-Henriquez [2010] with the real thing:

Accel for NIST random curve over [Fy2s3
Field multiplication 2.1X
Point multiplication 1.7X
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Beneath the timings

Times suggested that genus-2 with the anticipated hardware char 2
multiplier would be competitive with BN?.

» Naehrig, Niederhagen, Schwabe (BNP?) used an elegant
(redundant) field rep with floating-point arithmetic.

» SIMD can do 2 floating-point mult simultaneously.

> ...but operand size is limited by 53-bit mantissa while integer
multiplier is relatively fast on 64-bit operands.

» Bernstein: floating-point on Pentium for point mult on NIST
curves. 80-bit regs rather than SIMD. Integer mult is 32-bit.

So Naehrig et al. seemed surprisingly fast.

» Beuchat et al. (BN€): faster times with alg improvements and
faster mult with integer multiplier.
Overhead BN? was more than suspected.

Approaches may find application across hardware.

Hardware char 2 multiplier (2/2)

Why isn't actual ~ predicted?

1. OpenSSL in the 2008 estimates not written for speed records.
Need comparisons against fast versions using 64- or 128-bit
registers.

2. L-D “comb” commonly used for field mult is quite good in the
128-bit registers.

Sanity test: if mult in Fy233 is charged as 16 polynomial mult of
64-bit operands, then comb with 128-bit registers is 15 cycles
per such op.

Can't expect the acceleration factors from [GK, 2008].

3. [Fog] HW multiplier: throughput 1/8, latency 12. (Appears
perfect scheduling can do better.) Charged as in item 2, Fp23s
mul is 7 cycles each.

(Karatsuba appears effective even at this field size, and the
experiments have 9 HW muls. Regardless, L-D times mean
HW won't reach GK estimates.)
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Parallelization

Pairing finds Miller function f, p. Strategy to apply multiple cores:
1. Write r =2%r + rp for some w.

2. Let /p g be line through P and Q and vp be vertical line
through P. Then

Lowr PP

fr,P = f2Wr1+ro,P = f2Wr1,P -1y P
VP

3. Can evaluate fow, p as

2w r
P fovnp O fu pfrowp

depending on curve, embedding degree, weight of r,...

4. For our case, rp is small and f, p is approx two half-length
Miller function calculations.

5. Can apply recursively to exploit more processors.
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Acceleration for supersingular curve

Pairing with EC over Fo122s (128-bit security level), estimated and
experimental on Core 2 (45nm) and Core i5.

Number of processors
1 2 4 8

Estimated accel factor 19 35 58
Core2 time (10° cycles) 17.4 9.3 5.1 3.0
Acceleration factor 19 34 58
Core i5 time (10° cycles) 7.5 4.3 25* 1.7*
Acceleration factor 1.7 3.0 45

*Estimate from per-thread data.

» Experimental is close to estimated.
» Thread synchronization (via OpenMP) cost small.

» Parallelization overhead increases with number of processors.
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Parallelization of the 77 pairing

INPUT: P = (xp,yp), Q = (xq, yqQ) € E(Fam[r]), starting point w;
for processor i.
Ourput: n7(P, Q) € F3,,.

. parallel section(processor /)
Initialize F;

2% 2Wi
— (xq) L vQ; — (@) 1
xp; — (xp)27, yp; — (yp)27
fOI’j(— w; to Wi—|—1—1d0
Xpj  \/XPis YPi <= /YP1, XQ; < XQT,YQ; — YQF
Ui < Xpj+ o, Vi <+ XQ; + &
8o; < Ui - Vi +yp; +yq;+ B 81— ui +xQ;
Fi < Fi-(goj + &1;5 + 1)
end for
. F «— H:‘T:o F;
. end parallel
. return F(>"-1)(@m+1£2(m0/2)

eI LH PR

e
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Parallelization for asymmetric pairings
Technique is not specific to symmetric pairings. But:
» rg not so small, exponentiation by 2" not negligible.
» Final exponentiation is a larger portion of pairing cost.
Grabher, GroBschadl, Page [2008] obtain factor 1.6 accel for 2
cores on a BN curve.

» OpenMP used to parallelize Fp12 arithmetic and for
simultaneous 2 ops.

> ...but single-thread times are > 4X slower than BN?, BN€.
» A little help: Aranha, Karabina, Longa, Gebotys, Lépez
reduce cost of squarings in final exponentiation.
More opportunities if parallelization could be applied lower.
» OpenMP can have 3000-cycle sync on basic use.
» 1000 cycles with POSIX threads and spinlocks.

» ...but IF, multiplication is in hundreds of cycles.



Who wins the speed record?

If the question is “what's the fastest single pairing” then
supersingular curves over char 2 fields appear to use multiple cores
more efficiently and data suggests competitive with BN curves if
given enough cores and hardware multiplier.

But...is multi-core parallelism applied to a single pairing useful?
» Probably not where these processors are targeted.

» Application: weak device with multi-thread capability.

Arranging for degenerate divisors

BGOS remarked that parameters can be chosen in BF-IBE so that
encryption is on degenerate divisors.

» Degenerate is important for speed.

» But...the security argument in the EC setting does not carry
[CHM, 2010].

We illustrate security argument for Boneh-Lynn-Shacham
signatures.

What about genus-27
Embedding degree 12 can mean parameter-size advantages. Times
for particular implementation here are not compelling.
» Aranha, Beuchat, Detrey, Estibals cut Miller loop by 1/3.

» Pairing at security level corresponding to field size of 367
(rather than 439) bits on Core 2 and Core i5 (using hardware

multiplier):
Pairing Core 2 Core i5
Degenerate 5.0 2.5
Mixed 9.3 4.5
General 18.4 8.6

Units: 10° cycles

» The competition: Aranha, Rodriguez-Henriquez report BN
times of 1.7-2.3 on this platform (128-bit security level).

Pairings for genus-2, especially on degenerate divisors, interesting
again.

Boneh-Lynn-Shacham (BLS) Signatures

Let e : G x G — G71 be a symmetric pairing, and let P be a fixed
generator of G.
1. Key generation for Alice:
» Private key: x €g [1,n — 1]; Public key: X = xP.
2. Signature generation. To sign M, Alice does:
» Compute @ = H(M), where H: {0,1}* — G.
» Compute S = xQ.
Alice's signature on M is S.
3. Signature verification. To verify (M, S), Bob does:
» Compute Q = H(M).
> Accept iff e(P,S) = e(Q, X).

Correctness:

e(P,S) = e(P,xQ) = e(xP, Q) = e(X, Q) = e(Q, X).

N
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BLS Security BLS-2

DIl iiven 2 = 562 el €, @ompiie 5k Let e : G x G — Gt be the genus-2 pairing. Let D denote the set

Claim If DHP in G is hard and H is a random function, then the of degenerate divisors in G, and let P € D.

BLS signature scheme is secure. 1. Key generation. Alice does:
» Private key: x €g [1, n); Public key: X = xP.

2. Signature generation. To sign M, Alice does:
» Compute Q = H(M), where H : {0,1}* — D.
» Compute S = xQ.

Security argument Given a DHP instance (X, Q):
1. Set challenge public key as X and run BLS forger A.
2. Respond to hash queries H(M) made by A, except for a
randomly chosen distinguished query, by selecting a €g [0, n)

and setting H(M) = aP; the response to the distinguished
hash query is H(M*) = Q.

Alice's signature on M is S.
3. Signature verification. To verify (M, S), Bob does:
» Compute Q = H(M).

3. Respond to signing queries M # M* by setting S = aX. > Accept iff e(P, S) = e(Q, X).
4. If A eventually produces a forged signature S* on M*, then
we have successfully obtained the solution S* to the DHP DHP*: Given X = xP and Q, compute xQ.

instance (X, Q)
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DHP versus DHP* BLS-2 Security
Let P be a fixed generator of G. DHP*: Given X = xP and Q, compute xQ.
DHP: Given X = xP and Q, compute xQ. Claim Suppose that one can efficiently select a eg DPM. If DHP*
DHP*: Given X = xP and Q, compute xQ. in G is hard and H is a random function, then the BLS-2 signature

DHP and DHP* are computationally equivalent. sdnens 5 S

Security argument Given DHP™ instance (X, Q):
1. Set the challenge public key as X and run A.

Degeneracy-Preserving Multipliers Let P be an order-n degenerate )
2. Respond to hash queries H(M) made by A, except for a

divisor. e .
DPM = {a € [0,n) : aP is degenerate}. randoml}/ chosen distinguished query, by selectl.ng. a €R DPM
_ and setting H(M) = aP; the response to the distinguished
8P is degenerate. Since 8*™ =1 (mod n), there are exactly 4m query is H(M*) = Q.

degenerate divisors of this form. 3. Respond to signing queries M # M* with S = aX.

4. If A eventually produces a forged signature S* on M*, then we

Question: Can one efficiently select a eg DPM?
have obtained the solution S* to the DHP™ instance (X, Q).



BLS-2 Security

Perhaps: introduce a new problem to circumvent issue with
security argument.

DHP,: Given X = xP and Q, plus an oracle which returns
random pairs (R, xR), compute xQ.

Claim: If DHPp in G is hard and H is a random function, then
the BLS-2 signature scheme is secure.

But...assumption that DHPY, is hard is rephrasing of the assertion
that it is hard to forge signature.

BLS-3: Choose only the parameter P to be degenerate.
Verification: e(P, S) = e(Q, X).

Claim: BLS-3 is secure if DHP is hard and H is a random
function.
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Summary for genus-2

In most favorable case (BLS-2), verification is e(P, S) = e(Q, X)
with P and Q degenerate.

» Estimates are that these are factor 2 more expensive than
degenerate-degenerate.

» Optimization from Aranha, Beuchat, Detrey, Estibals give
factor 1.7 advantage to genus 2 degenerate-degenerate vs EC.

So, genus-2 not exactly compelling for speed in this example.

Genus-2 looks stronger in [ABDE], in part due to 367-bit base field
rather than 439-bit (elements fit in 3 rather than 4 128-bit
registers).
» Pairing on degenerate divisors is factor 3 faster than pairing
over E(Fau2s).
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