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Overview

Optimization and protocol issues for pairings over supersingular
curves, in particular for the genus-2 case.

1. Structure of pairings over (hyper)elliptic curves.

2. Eta pairing.

3. Hardware characteristic 2 multiplier. Parallelization for a
single paring.

4. Genus-2 supersingular curve.

5. BLS signature scheme with the genus-2 curve.
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Pairings from Elliptic Curves

Let E be an elliptic curve defined over Fq.

I Let n ≈ q be a prime divisor of #E (Fq) with gcd(n, q) = 1.

I Let k be the smallest positive integer with n | qk − 1, and
suppose that k > 1. Then E [n] ⊆ E (Fqk ).

I Let GT be the order-n subgroup of F∗qk .

The (reduced/restricted) Tate pairing is

t : E (Fq)[n]× E [n]→ GT

defined by

t(P,Q) = fn,P(Q)(q
k−1)/n

where fn,P is a Miller function with divisor n(P)− n(∞).
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Miller’s Algorithm for Computing t(P , Q)
Let n =

∑d
i=0 ni2

i .

1. Set f ← 1, R ← P.

2. For i from d down to 0 do:
2.1 Let ` be the tangent line through R, and let v be the vertical

line through 2R.
2.2 R ← 2R.
2.3 f ← f 2 · `(Q)/v(Q).
2.4 If ni = 1 then

2.4.1 Let ` be the line through R and P and let v be the vertical
line through R + P.

2.4.2 R ← R + P.
2.4.3 f ← f · `(Q)/v(Q).

3. Return f (qk−1)/n.

Optimizations

1. Improve the arithmetic in the main loop. Parallelize.

2. Reduce the number of iterations.

3. Improve the arithmetic in the final exponentiation.
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Symmetric Pairings

Let G1 = G2 = E (Fq)[n].

I Let Φ be an endomorphism on E with Φ(G1) 6= G1.

I e : G1 ×G1 → GT defined by

e(P,Q) = t(P,Φ(Q))

is a symmetric (Type 1) pairing.

Most pairing-based protocols can be implemented with symmetric
pairings. For the 128-bit security level:

k Curve Bitlength of Fqk

2 Y 2 = X 3 + aX/Fp1536 3072
4 Y 2 + Y = X 3 + X/F21223 4892
6 Y 2 = X 3 − X + 1/F3509 4840
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Eta Pairing (k = 4)
[Barreto, Galbraith, Ó’ hÉigeartaigh, Scott]

E/F2 : Y 2 + Y = X 3 + X

N = #E (F2m) = 2m − 2(m+1)/2 + 1, m ≡ 3 (mod 8).

I Doubling is cheap: [2](x , y) = (x2, y2 + 1).
I Distortion map:

F22m = F2m [u]/(u2 + u + 1), F24m = F22m [v ]/(v2 + v + u)

Φ(x , y) = (x + u2, y + ux + v).

I Pairing: Let P,Q ∈ E (F2m). Then

η(P,Q) = fT ,P(Φ(Q))M

where
T = 2(m+1)/2

M = (24m − 1)/N = (2m + 2(m+1)/2 + 1)(22m − 1)

I η(P,Q) is a fixed power of the Tate pairing.
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Computing η(P , Q)

Input: P = (x1, y1),Q = (x2, y2) ∈ E (F2m).

1. z ← x1 + 1.

2. f ← z · (x1 + x2 + 1) + y1 + y2 + (z + x2)u + v .

3. For i from 1 to (m + 1)/2 do:

3.1 z ← x1, x1 ←
√

x1, y1 ←
√

y1.
3.2 g ← z · (x1 + x2) + y1 + y2 + x1 + 1 + (z + x2)u + v .
3.3 f ← f · g .
3.4 x2 ← x2

2 , y2 ← y2
2 .

4. Return f (22m−1)(2m−2(m+1)/2+1).

Cost estimate: 7 · (m + 1)/2 multiplications in F2m .
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Genus-2 Supersingular Curve

[Barreto, Galbraith, Ó’ hÉigeartaigh, Scott]

C/F2 : Y 2 + Y = X 5 + X 3 + b.

I Degree zero divisor class group JC (Fq), q = 2m.

I Reduced divisors:
Degenerate: (P)− (∞), P ∈ C (Fq).
Non-degenerate: (P1) + (P2)− 2(∞)

Type A: P1,P2 ∈ C (Fq) \ {∞}.
Type B: P1 ∈ C (Fq2) \ C (Fq), P2 = π(P1).

I Mumford rep: a, b ∈ F2m [z ], deg(b) < deg(a) ≤ 2.

I #JC (Fq) ≈ q2.

I Embedding degree is k = 12 (#JC (Fq2) | q12 − 1).
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Symmetric Pairings

For the 128-bit security level:

k Curve Bitlength of Fqk

2 Y 2 = X 3 + aX/Fp1536 3072
4 Y 2 + Y = X 3 + X/F21223 4892
6 Y 2 = X 3 − X + 1/F3509 4840

12 Y 2 + Y = X 5 + X 3/F2439 5268

k = 12 gives relatively small base field.

9 / 32

Eta Pairing on Degenerate Divisors

I Octupling is cheap: If P = (x , y) ∈ C (Fq), then

8((P)− (∞)) = (P ′)− (∞)

where P ′ = (x64 + 1, y64 + x128 + 1).

I Eta pairing: Di = (Pi )− (∞). η(D1,D2) is a fixed power of
the Tate pairing.

I Cost estimate: 69 · (m − 1)/2 multiplications in F2m .
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Eta Pairing on General Divisors

1. If D1 is degenerate and D2 = (P1) + (P2)− 2(∞) is Type A
non-degenerate, then

η(D1,D2) = η(D1, (P1)− (∞)) · η(D1, (P2)− (∞)).

2. If D1 is degenerate (and fixed) and D2 is Type B
non-degenerate, then find a (small) integer c such that
D ′

2 = D2 + cD1 is Type A. Then

η(D1,D2) = η(D1,D
′
2)/η(D1,D1)

c .

(1 and 2 not necessarily fastest [Aranha, Beuchat, Detrey,
Estibals], but can use common code.)

3. For the general case, Lee & Lee give an alg for η(D1,D2)
using resultant. Cost estimate from mult counts gives factor 4
over degenerate-degenerate case.
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Timings

[Barreto, Galbraith, Ó’ hÉigeartaigh, Scott, 2007]

Timings (in milliseconds) for the eta pairing at the “1230-bit
security level” on a 3 GHz Intel Pentium 4:

Curve Pairing

E (F2307) 3.50
E (F3127) 5.36
C (F2103) degenerate 1.87
C (F2103) non-degenerate 6.42

Multiplication in F2103 exploited 128-bit SIMD registers. Other
fields used only 32-bit registers.
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Timings at 128-bit security level

Timings (in clock cycles) for the eta pairing at the 128-bit security
level on an Intel Core2.

Number of Pairing
Curve field mults (106 cycles)

E/F21223 4, 284 19.0
E/F3509 3, 570 15.8
C/F2439 (degenerate divisors) 15, 111 16.4

E/Fp256 (BNa) 15, 093 10
E/Fp256 (BNb) 4.5
E/Fp256 (BNc) 12, 785 3.3

aR-ate via Miracl, 2008
bNaehrig, Niederhagen, Schwabe
cBeuchat, Diaz, Mitsunari, Okamoto, Rodŕıguez-Henŕıquez, Teruya
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Beneath the timings

Times suggested that genus-2 with the anticipated hardware char 2
multiplier would be competitive with BNa.

I Naehrig, Niederhagen, Schwabe (BNb) used an elegant
(redundant) field rep with floating-point arithmetic.

I SIMD can do 2 floating-point mult simultaneously.
I ...but operand size is limited by 53-bit mantissa while integer

multiplier is relatively fast on 64-bit operands.
I Bernstein: floating-point on Pentium for point mult on NIST

curves. 80-bit regs rather than SIMD. Integer mult is 32-bit.

So Naehrig et al. seemed surprisingly fast.

I Beuchat et al. (BNc): faster times with alg improvements and
faster mult with integer multiplier.
Overhead BNa was more than suspected.

Approaches may find application across hardware.
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Developments favoring small characteristic

Hardware char 2 multiplier (Intel Core i5, 2009) Pre-release
speculation: should give factor > 2 accel in field mult against
methods relying on lookup with a few bits.

I Gueron and Kounavis [2008], estimates for point mult on
NIST random curve over F2233 (B-233):

Method acceleration
OpenSSL 0.57X
OpenSSL with enhancements 1X
...and 9-clock HW multiplier 12X
...and 3-clock HW multiplier 37X

I Aranha, Rodŕıguez-Henŕıquez [2010] with the real thing:

Accel for NIST random curve over F2233

Field multiplication 2.1X
Point multiplication 1.7X
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Hardware char 2 multiplier (2/2)

Why isn’t actual ≈ predicted?

1. OpenSSL in the 2008 estimates not written for speed records.
Need comparisons against fast versions using 64- or 128-bit
registers.

2. L-D “comb” commonly used for field mult is quite good in the
128-bit registers.

Sanity test: if mult in F2233 is charged as 16 polynomial mult of
64-bit operands, then comb with 128-bit registers is 15 cycles
per such op.

Can’t expect the acceleration factors from [GK, 2008].

3. [Fog] HW multiplier: throughput 1/8, latency 12. (Appears
perfect scheduling can do better.) Charged as in item 2, F2233

mul is 7 cycles each.

(Karatsuba appears effective even at this field size, and the
experiments have 9 HW muls. Regardless, L-D times mean
HW won’t reach GK estimates.)
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Parallelization

Pairing finds Miller function fr ,P . Strategy to apply multiple cores:

1. Write r = 2w r1 + r0 for some w .

2. Let `P,Q be line through P and Q and vP be vertical line
through P. Then

fr ,P = f2w r1+r0,P = f2w r1,P · fr0,P ·
`2w r1P,r0P

vrP
.

3. Can evaluate f2w r1,P as

f 2w

r1,P · f2w ,r1P or f r1
2w ,P · fr1,2wP

depending on curve, embedding degree, weight of r ,...

4. For our case, r0 is small and fr ,P is approx two half-length
Miller function calculations.

5. Can apply recursively to exploit more processors.
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Parallelization of the ηT pairing

Input: P = (xP , yP),Q = (xQ , yQ) ∈ E (F2m [r ]), starting point wi

for processor i .
Output: ηT (P,Q) ∈ F∗24m .

1: parallel section(processor i)
2: Initialize Fi

3: xQi ← (xQ)2
wi , yQi ← (yQ)2

wi

4: xP i ← (xP)
1

2wi , yP i ← (yP)
1

2wi

5: for j ← wi to wi+1 − 1 do
6: xP i ←

√
xP i , yP i ←

√
yP i , xQi ← xQ

2
i , yQi ← yQ

2
i

7: ui ← xP i + α, vi ← xQi + α
8: g0i ← ui · vi + yP i + yQi + β, g1i ← ui + xQi

9: Fi ← Fi · (g0i + g1i s + t)
10: end for
11: F ←

∏π
i=0 Fi

12: end parallel
13: return F (22m−1)(2m+1±2(m+1)/2).
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Acceleration for supersingular curve

Pairing with EC over F21223 (128-bit security level), estimated and
experimental on Core 2 (45nm) and Core i5.

Number of processors
1 2 4 8

Estimated accel factor 1.9 3.5 5.8

Core2 time (106 cycles) 17.4 9.3 5.1 3.0
Acceleration factor 1.9 3.4 5.8

Core i5 time (106 cycles) 7.5 4.3 2.5∗ 1.7∗

Acceleration factor 1.7 3.0 4.5
∗Estimate from per-thread data.

I Experimental is close to estimated.

I Thread synchronization (via OpenMP) cost small.

I Parallelization overhead increases with number of processors.
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Parallelization for asymmetric pairings

Technique is not specific to symmetric pairings. But:

I r0 not so small, exponentiation by 2w not negligible.

I Final exponentiation is a larger portion of pairing cost.

Grabher, Großschädl, Page [2008] obtain factor 1.6 accel for 2
cores on a BN curve.

I OpenMP used to parallelize Fp12 arithmetic and for
simultaneous Fp2 ops.

I ...but single-thread times are > 4X slower than BNb, BNc.

I A little help: Aranha, Karabina, Longa, Gebotys, López
reduce cost of squarings in final exponentiation.

More opportunities if parallelization could be applied lower.

I OpenMP can have 3000-cycle sync on basic use.

I 1000 cycles with POSIX threads and spinlocks.

I ...but Fp multiplication is in hundreds of cycles.
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Who wins the speed record?

If the question is “what’s the fastest single pairing” then
supersingular curves over char 2 fields appear to use multiple cores
more efficiently and data suggests competitive with BN curves if
given enough cores and hardware multiplier.

But...is multi-core parallelism applied to a single pairing useful?

I Probably not where these processors are targeted.

I Application: weak device with multi-thread capability.
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What about genus-2?
Embedding degree 12 can mean parameter-size advantages. Times
for particular implementation here are not compelling.

I Aranha, Beuchat, Detrey, Estibals cut Miller loop by 1/3.

I Pairing at security level corresponding to field size of 367
(rather than 439) bits on Core 2 and Core i5 (using hardware
multiplier):

Pairing Core 2 Core i5

Degenerate 5.0 2.5
Mixed 9.3 4.5
General 18.4 8.6

Units: 106 cycles

I The competition: Aranha, Rodŕıguez-Henŕıquez report BN
times of 1.7–2.3 on this platform (128-bit security level).

Pairings for genus-2, especially on degenerate divisors, interesting
again.

22 / 32

Arranging for degenerate divisors

BGOS remarked that parameters can be chosen in BF-IBE so that
encryption is on degenerate divisors.

I Degenerate is important for speed.

I But...the security argument in the EC setting does not carry
[CHM, 2010].

We illustrate security argument for Boneh-Lynn-Shacham
signatures.
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Boneh-Lynn-Shacham (BLS) Signatures

Let e : G×G→ GT be a symmetric pairing, and let P be a fixed
generator of G.

1. Key generation for Alice:
I Private key: x ∈R [1, n − 1]; Public key: X = xP.

2. Signature generation. To sign M, Alice does:
I Compute Q = H(M), where H : {0, 1}∗ → G.
I Compute S = xQ.

Alice’s signature on M is S .

3. Signature verification. To verify (M,S), Bob does:
I Compute Q = H(M).
I Accept iff e(P,S) = e(Q,X ).

Correctness:

e(P,S) = e(P, xQ) = e(xP,Q) = e(X ,Q) = e(Q,X ).
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BLS Security

DHP Given X = xP and Q, compute xQ.

Claim If DHP in G is hard and H is a random function, then the
BLS signature scheme is secure.

Security argument Given a DHP instance (X ,Q):

1. Set challenge public key as X and run BLS forger A.

2. Respond to hash queries H(M) made by A, except for a
randomly chosen distinguished query, by selecting a ∈R [0, n)
and setting H(M) = aP; the response to the distinguished
hash query is H(M∗) = Q.

3. Respond to signing queries M 6= M∗ by setting S = aX .

4. If A eventually produces a forged signature S∗ on M∗, then
we have successfully obtained the solution S∗ to the DHP
instance (X ,Q)
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BLS-2

Let e : G×G→ GT be the genus-2 pairing. Let D denote the set
of degenerate divisors in G, and let P ∈ D.

1. Key generation. Alice does:
I Private key: x ∈R [1, n); Public key: X = xP.

2. Signature generation. To sign M, Alice does:
I Compute Q = H(M), where H : {0, 1}∗ → D.
I Compute S = xQ.

Alice’s signature on M is S .

3. Signature verification. To verify (M,S), Bob does:
I Compute Q = H(M).
I Accept iff e(P,S) = e(Q,X ).

DHP∗: Given X = xP and Q, compute xQ.
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DHP versus DHP∗

Let P be a fixed generator of G .

DHP: Given X = xP and Q, compute xQ.

DHP∗: Given X = xP and Q, compute xQ.

DHP and DHP∗ are computationally equivalent.

Degeneracy-Preserving Multipliers Let P be an order-n degenerate
divisor.

DPM = {a ∈ [0, n) : aP is degenerate}.

8iP is degenerate. Since 84m ≡ 1 (mod n), there are exactly 4m
degenerate divisors of this form.

Question: Can one efficiently select a ∈R DPM?
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BLS-2 Security

DHP∗: Given X = xP and Q, compute xQ.

Claim Suppose that one can efficiently select a ∈R DPM. If DHP∗

in G is hard and H is a random function, then the BLS-2 signature
scheme is secure.

Security argument Given DHP∗ instance (X ,Q):

1. Set the challenge public key as X and run A.

2. Respond to hash queries H(M) made by A, except for a
randomly chosen distinguished query, by selecting a ∈R DPM
and setting H(M) = aP; the response to the distinguished
query is H(M∗) = Q.

3. Respond to signing queries M 6= M∗ with S = aX .

4. If A eventually produces a forged signature S∗ on M∗, then we
have obtained the solution S∗ to the DHP∗ instance (X ,Q).
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BLS-2 Security

Perhaps: introduce a new problem to circumvent issue with
security argument.

DHP∗O : Given X = xP and Q, plus an oracle which returns
random pairs (R, xR), compute xQ.

Claim: If DHP∗O in G is hard and H is a random function, then
the BLS-2 signature scheme is secure.

But...assumption that DHP∗O is hard is rephrasing of the assertion
that it is hard to forge signature.

BLS-3: Choose only the parameter P to be degenerate.
Verification: e(P,S) = e(Q,X ).

Claim: BLS-3 is secure if DHP is hard and H is a random
function.
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Summary for genus-2

In most favorable case (BLS-2), verification is e(P,S) = e(Q,X )
with P and Q degenerate.

I Estimates are that these are factor 2 more expensive than
degenerate-degenerate.

I Optimization from Aranha, Beuchat, Detrey, Estibals give
factor 1.7 advantage to genus 2 degenerate-degenerate vs EC.

So, genus-2 not exactly compelling for speed in this example.

Genus-2 looks stronger in [ABDE], in part due to 367-bit base field
rather than 439-bit (elements fit in 3 rather than 4 128-bit
registers).

I Pairing on degenerate divisors is factor 3 faster than pairing
over E (F21223).
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