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Abstract

One of the major design decisions when developing a
new microprocessor is determining the target pipeline depth
and clock rate since both factors interact closely with one
another. The optimal pipeline depth of a processor has
been studied before, but the impact of the memory system
on pipeline performance has received less attention. This
study analyzes the affect of different level-1 cache designs
across a range of pipeline depths to determine what role the
memory system design plays in choosing a clock rate and
pipeline depth for a microprocessor. The pipeline depths
studied here range from those found in current processors
to those predicted for future processors. For each pipeline
depth a variety of level-1 cache sizes are simulated to ex-
plore the relationship between clock rate, pipeline depth,
cache size and access latency. Results show that the larger
caches afforded by shorter pipelines with slower clocks out-
perform longer pipelines with smaller caches and higher
clock rates.

1. Introduction

Determining the target clock frequency and pipeline or-
ganization are some of the most critical decisions to be
made during the design of a microprocessor. Both as-
pects are tightly intertwined with semiconductor technol-
ogy, workload characteristics, memory performance and
power consumption. Long pipelines reduce the amount of
work per stage to achieve high clock rates and result in high
instruction throughput. On the other hand, insufficient in-
struction level parallelism as well as practical limits on the
minimum amount of work performed per stage limit the
pipeline depth in practical implementations. Depending on
the clock rate, microarchitectural structures of a given size

will exhibit different access latencies. One fundamental
structure with significant impact on overall performance is
the level-1 cache. Generally, small caches are faster, but the
higher miss rate may offset the performance gain from the
clock rate increase. This paper presents a study that trades
cache size for access latency for a wide variety of pipeline
depths.

The optimal pipeline depth of a microprocessor has been
explored before in a variety of contexts, but the influence
of the memory hierarchy in this tradeoff has received less
attention. The study presented here is designed to close that
gap by varying pipeline depths, level-1 cache sizes and ac-
cess latencies. In particular, there are two endpoints of inter-
est. Short pipelines operate at lower clock rates and afford
larger level-1 caches than deep, high clock rate pipelines.
To explore the tradeoff between pipeline depth and cache
access latency, pipeline depth and level-1 instruction and
data cache size are varied independently. For each pipeline
depth, a projected clock rate is calculated. Although a spe-
cific 65 nm process is used for these projections, the un-
derlying methodology is technology-independent and hence
the results of this work are generally applicable. For each
clock period, access latencies in cycles are computed for
various level-1 cache sizes. Each of the resulting configu-
rations is simulated running SPEC2000 benchmarks. The
primary performance measure in this context is the num-
ber of instructions completed per second (IPS). Unlike miss
rates or IPC, this metric accounts for different cycle times
and represents predicted absolute performance.

Results show that performance decreases for longer
pipelines. A short 7-stage pipeline consistently outperforms
all other organizations. Although operating at slower clock
rates, it allows large caches to be accessed with low latency.
The higher clock rate of deeper pipelines is not able to com-
pensate for the lower hit rates of smaller caches, in part due
to the relatively modest degree of instruction level paral-
lelism found in the benchmarks.
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Section 2 discusses related work. The simulation
methodology is described in Section 3. Section 4 discusses
the method to derive clock frequencies, pipeline depth and
cache characteristics from technology projection. The re-
sults are presented in Section 5 and Section 6 draws conclu-
sions and outlines future work.

2. Related Work

Several groups have analyzed the problem of determin-
ing the ideal pipeline length. Kunkel and Smith analyze the
Cray-1S processor [9]. Hartstein and Puzak develop a for-
mula and analyze the results of different workload types to
determine the optimum depth [5]. Similarly, Sprangle and
Carmean start with a Pentium IV type architecture, and de-
termine that the optimal pipeline depth is greater than the
twenty stage pipeline currently implemented [13]. Agarwal
et al. show that processor speedups will not continue at the
same rate due to the wire delays in semiconductor devices
and slowing processor clocks [1]. Lastly, Hrishikeshet al.
take a slightly different approach and determine the opti-
mum amount of logic for a pipeline stage independent of
the length of the pipeline [7].

Hartstein and Puzak [5] take an analytical approach and
develop a formula to determine the optimum pipeline depth
based on the total logic depth, latch overhead, width, work-
load, and hazard penalties of the processor. Intuitively, re-
ducing the latch overhead, hazard penalties, and hazards in
the workload will allow for a deeper processor. Increasing
the width of the processor will reduce the optimal pipeline
depth since hazards occur more frequently. This formula
is validated with simulation results that vary each of the
different parameters in the formula individually. Interest-
ingly, each type of workload has its own optimal pipeline
depth. These optimal depths range from 13 to 36 stages
with a nearly Gaussian distribution. Cache miss rates and
miss penalties represent one aspect of hazard frequency and
penalty, but are not separately addressed in this work.

Sprangle and Carmen analyze many of the same aspects
[13], with a particular emphasis on the effect of branch mis-
prediction. This work also identifies the different effects
of various workloads on processor performance which are
mainly due to branch behavior. This work does not directly
consider memory hierarchy effects, but identifies the as-
sumption of a fixed cache latency as a modeling limitation.

Agarwal et al. predict that the50 − 60% annual pro-
cessor improvement seen over the past decade will soon
cease [1]. Instead, the maximum annual performance im-
provement is predicted to shrink to12.5%. These improve-
ments are attributed to a combination of pipeline depth scal-
ing and structure capacity scaling. This study identifies on-
chip memory as a significant bottleneck, and predicts that
monolithic processor cores will become inefficient.

The approach taken by Hrishikeshet al. in [7] is simi-
lar to that taken by Kunkel and Smith in that it determines
the optimal amount of work that should be done during each
pipeline stage. To compensate for changes in manufacturing
technology, logic depth in terms of fan-out-of-four (FO4) is
used. This metric removes the fabrication process as a vari-
able from consideration. Using the Alpha 21264 as a base-
line processor, Hrishikeshet al. vary the number of stages
needed for each component in the pipeline. The number of
stages is determined by dividing the total amount of logic in
that component by the amount of logic in FO4s per stage.
This results in an optimal amount of logic per stage of 6
FO4’s for integer code and 4 FO4’s for vector floating point
code. These results translate into a pipeline of about thirty
stages in length.

Combined, previous studies provide a comprehensive
view of many pipeline design aspects. However, the inter-
action of the memory system with pipeline depth and clock
frequency has not received full attention. The work pre-
sented here is designed to quantify this effect by varying
the size of both level-1 caches and adjusting access laten-
cies based on technology projections for various pipeline
depth and clock frequencies. Additionally, the sensitivity
of the observed trends to the level-2 cache organization and
branch prediction scheme is analyzed.

3. Methodology

Using SimpleScalar 3.0 [3] and the SPEC2000 bench-
mark suite [6], an environment is created to explore the
interaction between pipeline depth, cache size and latency.
SimpleScalar is a flexible execution-driven cycle-level pro-
cessor simulation tool that has been modified for this study
to support varying pipeline depth. The SPEC2000 bench-
marks are a commonly used and well-understood suite of
computationally demanding performance benchmarks.

Simulations are run for a number of pipeline depths rang-
ing from 7 to 50 stages, thus representing current as well as
predicted future organizations. For a given process tech-
nology and an estimated total amount of logic, a maximum
clock frequency can be calculated for each pipeline depth,
as further described in Section 4.1. Then, for a variety of
level-1 cache sizes ranging from 1 kbyte to 512 kbyte, ac-
cess latencies in cycles are calculated. Note that although
absolute cache access times are independent of pipeline
depth, the number of cycles until a load value can be used
changes due to varying clock frequencies.

3.1. Baseline Processor Configuration

All aspects of the simulated processor except pipeline
depth and the level-1 cache configuration are kept constant
across the experiments, thus isolating the interaction effect
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of these two factors from other variables. The baseline sys-
tem is closely related to the Alpha 21264, which is a mod-
ern dynamically-scheduled superscalar microprocessor, ca-
pable of decoding, dispatching and graduating four instruc-
tions per cycle. The simulated processor contains four inte-
ger ALUs, one integer multiply / divide unit, four floating
point ALUs, and one floating point multiply / divide unit.
All of these functional units are fully pipelined. Their oper-
ational latencies are varied according to pipeline depth, and
are further discussed in Section 4.2.

This processor organization corresponds to a number of
currently available microprocessors but may be aggressive
for deeply-pipelined, high-frequency designs. Conditional
branches are predicted by a 2-level branch predictor, con-
figured similarly to the local branch prediction strategy dis-
cussed in [11]. The performance of the branch prediction
scheme is discussed in Sec. 5.4. The predictor is sized with
8192 entries and 512 entries for the level one and level two
predictors, respectively. Both predictors keep eight bits of
history. These values are used because of their reasonable
size and high prediction rate. The Register Update Unit
(RUU) is 512 entries deep, and the Load/Store Queue holds
64 instructions. Both structures are intentionally kept large
to minimize the number of structural stalls.

The processor uses 4-way set associative level-1 instruc-
tion and data caches with 32 byte blocks. The size and la-
tency of both caches is varied with the pipeline depth. The
level-2 cache is held constant at 2 Mbyte, 4-way set asso-
ciative, with 64 byte blocks. The main memory bus is 8
bytes wide, and its speed is held constant at 800MHz. The
access times for all caches and main memory, along with
the level-1 cache sizes are discussed in Section 4.1.

3.2. Simulator Modifications

In order to simulate a number of different pipeline
depths, modifications to two parts of the Sim-OutOrder sim-
ulator from SimpleScalar version 3.0 [3] are needed.

The issue latency of all functional units is set to one cy-
cle, thus representing fully-pipelined units. The operational
latency determines how long it takes to complete a single
instruction and have the result ready for use in another in-
struction. By varying the operational latency of the func-
tional units, the pipeline length of the simulated processor
is increased.

In addition to increasing functional unit latency, changes
made to the Decode/Dispatch stages of the pipeline allow a
configurable “front-end” length to the pipeline. The Decode
and Dispatch stages in the standard Sim-OutOrder simula-
tor are implemented as a single stage. By splitting this func-
tion into two functions (Decode and Dispatch), and insert-
ing a queue to hold instructions between these functions, the
length of these functions can be increased to approximate

a variable-length pipeline. The Decode stage contains the
instruction decode logic and the branch predictors, while
placement of the instruction into the RUU and LSQ is de-
layed until the Dispatch stage. Since the branch prediction
logic is in the early Decode stage, before instructions are put
on the queue, the simulator is more optimistic with branch
prediction than real processors might be.

Generally, this simulation model is overly optimistic
about the ability to pipeline all parts of the processor. Since
this modeling error affects deep pipelines more than shal-
low ones, simulations likely overestimate the performance
benefits of deep pipelines.

3.3. Benchmarks

The SPEC CPU2000 benchmark suite [6] is one of the
most commonly used set of benchmarks to evaluate pro-
cessor and system performance on computationally inten-
sive workloads. It is well understood by researchers and
generally considered representative of scientific and engi-
neering workloads for workstations. This study considers
both integer and floating point benchmarks. All bench-
marks are compiled with the SimpleScalar port of gcc, ver-
sion 2.6.3. Due to compiler and simulation limitations, four
integer programs (175.vpr, 181.mcf, 186.crafty, 252.eon)
and six floating point programs (178.galgel, 187.facerec,
188.ammp, 189.lucas, 191.fma3d, 200.sixtrack) are not in-
cluded, because they can not be compiled by the Sim-
pleScalar tool chain.

The remaining 16 benchmarks (8 integer, 8 floating
point) are run for each of the processor configurations dis-
cussed in Sections 4.1 and 4.2. Using this number of bench-
mark programs provides a broad range of workloads that
fairly compare the performance of the various processor
configurations. All simulations are “fast-forwarded”500
million instructions and then run for 1 billion instructions.

4. Estimating Pipeline Organizations

In order to vary the amount of logic in each stage of the
pipeline, the total logic length of the pipeline must be de-
termined. Dividing this measure by the number of pipeline
stages results in the logic depth per pipeline stage. Thus, us-
ing the results from [7], the Alpha 21264 has a seven stage
pipeline and a clock period that is equivalent to 17.4 FO4’s.
Included in this period length is 1.8 FO4’s of pipeline over-
head. Subtracting the overhead results in a usable logic
depth of 15.6 FO4’s per stage, and a total logic depth of
109.2 FO4’s to process an instruction.

To determine the resulting logic depth per pipeline stage,
and thus the maximum clock frequency, the total logic depth
is divided by the number of stages and the pipeline over-
head of 1.8 FO4’s is added to each stage. From the number
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Table 1. Tested pipeline depths, FO4’s per
stage, period lengths, and clock frequencies.

Pipeline FO4’s per Period Clock Rate
Depth stage Length (ns) in GHz

7 17.4 .2192 4.562
10 12.72 .1603 6.238
15 9.08 .1144 8.741
20 7.26 .09148 10.931
25 6.17 .07774 12.863
30 5.44 .06854 14.59
40 4.53 .05708 17.519
50 3.98 .05015 19.940

of FO4 delays per stage, the clock period can be computed
for a given CMOS process technology by multiplying the
drawn gate length by 360 picoseconds [7]. This work uses
an aggressive 65 nm fabrication process generation with a
drawn gate length of 35nm for high-performance micropro-
cessors estimated in the Semiconductor Industry Associa-
tion Roadmap [2]. Under these assumptions, one FO4 delay
corresponds to 12.6 ps.

Table 1 summarizes the pipeline depths considered in
this work, as well as the resulting per-stage logic depth
and clock frequency. The SIA roadmap suggests a clock
frequency of 6.739GHz for the 65 nm fabrication process,
which is roughly equivalent to an 11 stage pipeline using
the method developed in this work. Note that this approach
to calculating pipeline depth and clock frequencies is overly
optimistic in several aspects. It assumes that the processor
logic can be perfectly pipelined to any depth, and it is based
on technology projections rather than established processes.
Both assumptions lead to an overestimate of the benefits of
deep pipelines.

Given that both FO4 delays and the scaling model that
Cacti [14] uses to estimate cache access latencies are pro-
cess independent, only one process technology needs to be
considered. Although clock speeds will increase as the fab-
rication process becomes smaller and more mature, perfor-
mance trends remain.

4.1. Memory Hierarchy Calculations

Cacti was originally developed by Wilton and Jouppi as
a cache access timing model that is capable of power and
area modeling as well [14]. This work uses the most recent
version of Cacti, 3.2, to determine the access time for all
cache designs in this study [12]. Since block size and asso-
ciativity do not impact access time, they are held constant.
For example, for an 8 kbyte cache in a 50 stage pipeline, ac-
cess time changes by only one processor clock cycle when
varying block size between 32 and 64 bytes and associativ-
ity between two and eight. Similar behavior is seen for the

Table 2. Pipeline depth, period length, calcu-
lated access latency, and rounded access la-
tency in cycles for a 32 kbyte cache.

Pipeline Period Calculated Rounded
Depth Length (ns) Latency Latency

7 .2192 2.355 2
10 .1603 3.222 3
15 .1144 4.514 4
20 .09148 5.645 6
25 .07774 6.643 7
30 .06854 7.534 8
40 .05708 9.047 9
50 .05015 10.297 10

associativity of the level-2 cache. This study uses split 4-
way set associative level-1 instruction and data caches with
32 byte blocks and a unified 2 Mbyte, 4-way set associative
level-2 cache with 64 byte blocks.

For each pipeline depth, clock periods are determined us-
ing the method described previously. By dividing the access
time by the clock period, a latency in cycles for the cache
structure is then determined. For example, for a 64 kbyte
cache in the 65 nm process, the latency is calculated to be
11.81 cycles for a 50 stage pipeline. The same cache in the
90 nm process has an access time of 0.79644 ns, which is
equivalent to 10.49 cycles. Similarly, for an 8 kbyte cache
at the same pipeline depth, the latency is 8.99 cycles in the
65 nm process and 8.23 cycles for the 90 nm fabrication
processes. These observations confirm that Cacti’s access
latency predictions are process-independent.

As an example, Table 2 shows the latency in cycles for
a fixed 32 kbyte cache across all pipeline depths. Cacti cal-
culates a 0.51641 ns access latency in a 65 nm process. For
each pipeline configuration, the access time is divided by
the processor cycle time, and the resulting access latency is
rounded to the nearest integer value. Arithmetic rounding is
used to compensate for possible advances in cache designs
and process technology, while possibly overestimating the
cache size and speed. This calculation is then repeated at
each pipeline depth for cache sizes ranging from 1 kbyte to
512 kbyte.

Table 3 shows the calculated and rounded latencies, in
cycles, for a 15-stage pipeline across all considered cache
sizes. Using a 65 nm process, this pipeline is estimated to
run with a 0.1144 ns cycle time. The reported cache sizes
demonstrate that multiple cache configurations may exhibit
the same access latency in cycles. In this case, only the
largest cache is considered for further evaluation. Note that
the access latency for three cache sizes (1, 2 and 32 kbyte)
is rounded down to compensate for possible modeling er-
ror and to allow for implementation-specific latency opti-
mizations such as sum-addressed memory [10]. All other
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Table 3. Cache sizes, access times estimated
by Cacti and access latency in cycles for a 15
stage pipeline.

Cache Access Calculated Rounded
Size (KB) Time (ns) Latency Latency

1 0.40883 3.574 3
2 0.41797 3.654 3
4 0.43826 3.831 4
8 0.45092 3.942 4
16 0.47535 4.155 4
32 0.51641 4.514 4
64 0.59522 5.203 5
128 0.68278 5.968 6
256 0.85591 7.482 7
512 1.49065 13.030 13

latencies are derived via normal arithmetic rounding.
Finally, Table 4 summarizes all pipeline and cache con-

figurations considered for evaluation.
The 2 Mbyte, 4-way set associative, 64 byte block level-

2 cache has an access time of 3.37543 ns according to Cacti.
With normal rounding, an L2 access takes 15, 21, 29, 37,
43, 49, 59, and 67 cycles respectively for pipeline depths
of 7, 10, 15, 20, 25, 30, 40, and 50 stages. The latency for
an L2 miss is calculated based on an estimated 90 ns main
memory access. Dividing that latency by the clock rate of
the respective pipeline, level-2 miss penalties are calculated
to be 411, 561, 787, 984, 1158, 1313, 1577, and 1795 cycles
for the first word of a cache line. At a bus speed of 800
MHz, each subsequent part of a cache line takes 6, 8, 11,
14, 16, 18, 22, and 25 processor cycles.

4.2. Functional Unit Latencies

The modified simulation model attributes pipeline depth
changes to two distinct parts of the processor: instruction
decode and execution. Based on published pipeline orga-
nizations [7] approximately 60% of the processing are at-
tributed to the execution stage, and the remaining 40% are
assigned to the decode logic. Branch prediction, decod-
ing and register renaming table are placed in the front-end,
while the issue window, register file, and execution units are
placed into the back-end. Using the above-mentioned ratio,
the target pipeline depth is divided into a number of front-
end and back-end stages. Since the simulation model does
not allow a uniform lengthening of the pipeline, latencies of
the execute stage and modified decode stage are changed to
approximate pipelines of the desired depth.

Functional unit latencies are scaled for deeper pipelines
based on published data from the Alpha 21264, with integer
addition as baseline. For each pipeline depth, the latency for
an integer addition is computed and the latencies of other
functional units are scaled based on the original ratio. Since

Table 4. Summary of all pipeline and level-1
cache configurations tested.

Depth Cache Size (KB) Latency (cycles)

7 32 2
128 3
256 4
512 7

10 32 3
128 4
256 5

15 2 3
32 4
64 5
128 6

20 1 4
16 5
64 6
128 7

25 2 5
16 6
32 7
128 8

30 4 6
16 7
32 8
64 9

40 2 7
16 7
32 9
64 10

50 2 8
16 9
32 10
64 12

the Alpha 21264 does not have a functional unit for integer
division, the SimpleScalar default value of 20 cycles is used
as the base latency. Table 5 summarizes the latencies of all
functional units for the different pipeline depths.

5. Results

The results express performance in billions of instruc-
tions per second (BIPS). The data points in the graphs are
the harmonic means of the respective integer and floating
point benchmark program results. Additionally, a sensitiv-
ity analysis is run to analyze how stable results are as the
level-2 cache and branch predictor configuration changes.
The reader is reminded here that the level-1 cache sizes
listed reflect the respective size of the instruction and data
level-1 caches, not the sum of these caches.

5.1. Instruction Completion Rate

Ultimately, the speed of a processor is determined by the
amount of work completed in a given time period. Figures
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Table 5. Decode and functional unit latencies for each pipeline depth.
Pipeline Num. Decode Num. Int. Int. Mult. Int. Div FP Add/Mult. FP Div.
Depth Stages Add Stages Latency Latency Latency Latency

7 1 1 7 20 4 12
10 2 3 13 33 8 20
15 4 6 21 53 13 33
20 6 9 27 64 18 41
25 8 12 33 78 22 50
30 10 15 41 99 28 63
40 14 21 56 132 39 85
50 18 27 79 193 53 123

1 and 2 show the performance of all configurations tested in
terms of Instructions per Second. This metric is computed
by multiplying the number of cycles required to complete
1 billion instructions with the cycle time for each pipeline
organization, normalized to one second of real time. Note
that both figures contain the same data, but with the data
points grouped differently to highlight distinct trends. Each
data point represents the harmonic mean of all benchmarks.

Overall, the results clearly show that the higher clock
rates of deeply pipelined architectures are not able to com-
pensate for the smaller caches that are needed to maintain
acceptable access latencies. The shortest pipeline consis-
tently outperforms all other organizations with almost iden-
tical results for all cache sizes tested. On the other hand, the
slowest organization is found in a 20-stage pipeline with 1
kbyte caches, with many deeper pipelines performing sig-
nificantly better.

Figure 1 connects data points with a constant level-1
cache access latency. This representation shows how deep-
ening the pipeline while maintaining a constant access la-
tency in cycles causes a drastic reduction in performance.
The increasing clock frequency requires the use of smaller
caches, and the higher clock rates are not able to compen-
sate for the resulting higher miss rates. In fact, in all cases
larger caches with a higher access latency result in a perfor-
mance gain for a given pipeline depth and clock rate. The
higher cache hit rates outweigh the penalty of a longer ac-
cess latency. This effect is particularly pronounced for deep,
high clock rate pipelines.

Figure 2 shows the same data as discussed before, but
with data points for identical cache sizes connected. This
representation provides a visual record of the decreasing
size of the caches as pipelines are stretched to maintain rea-
sonable hit latencies. For a fixed cache size, access latency
grows as the pipeline is deepened, due to higher clock rates.
Despite consistent hit rates, the longer access latency coun-
ters the benefit of faster clocks and degrades overall perfor-
mance.
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Figure 1. Instructions Per Second versus
Pipeline Depth, Data Points Connected by
Cache Access Latency
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Figure 2. Instructions Per Second versus Pipeline Depth, Data points Connected by Cache Size

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

7 10 15 20 25 30 40 50
Pipeline Depth

IPC

1k Cache 2k Cache 4k Cache 16k Cache 32k Cache 64k Cache
128k Cache 256k Cache 512k Cache

(a) Integer Benchmarks

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

7 10 15 20 25 30 40 50

Pipeline Depth

IP
C

1k Cache 2k Cache 4k Cache 16k Cache 32k Cache 64k Cache
128k Cache 256k Cache 512k Cache

(b) Floating Point Benchmarks

Figure 3. Instructions Per Cycle versus Pipeline Depth

5.2. Instruction-level Parallelism

Instructions-per-cycle (IPC) is a commonly used proces-
sor performance measure that is independent of the imple-
mentations cycle time. On the 4-way superscalar processor
modeled here, the theoretical maximum IPC is four. In re-
ality, this peak value is negatively affected by various stall
conditions caused for instance by branch mispredictions,
cache misses and instruction dependencies.

Figure 3 shows the measured IPC for each pipeline
depth. As expected, IPC decreases as pipelines get deeper,
since longer pipelines exhibit larger branch misprediction
penalties. Furthermore, increasing functional unit laten-
cies expose more instruction dependencies. Finally, deeper
pipelines with higher clock rates lead to smaller caches with

higher access latencies, thus increasing the average memory
latency.

While a decreasing IPC is expected for deeper pipelines,
results from the previous section show that the higher clock
rate is not able to compensate for the lower IPC.

5.3. Level-1 Cache Miss Rate

Unlike other studies on the effect of pipeline depth on
performance, this study varies the level-1 instruction cache
configuration along with the data cache. Figure 4 shows
both the level-1 instruction and data cache miss rates. As
expected, smaller caches result in rapidly growing miss
rates for both instructions and data. These results explain
in part the decreasing IPC of deep pipelines, and confirm
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Figure 4. Level-1 Instruction and Data Cache
Miss Rates

that high cache miss rates can counter the benefit of faster
clock rates.

5.4. Branch Prediction Accuracy

Section 3.1 discussed the branch prediction scheme used
by this study while Sec. 3.2 discussed how the prediction
logic is placed early in the pipeline to provide a higher pre-
diction rate, and minimize branch misprediction penalties.
Using these methods, an average branch prediction accu-
racy (both directional and address) of 95% is achieved for
the floating point benchmarks, while the directional accu-
racy for the integer benchmarks is 94% and the address ac-
curacy is 91% - 92%. These prediction rates are unchanged
across all pipeline depths, which practically eliminates the

branch prediction scheme as a variable in simulation. How-
ever, the branch misprediction delay still exist, and scales
with processor depth.

5.5. Level-2 Cache Miss Rates

Table 6 shows the level-2 cache miss rate (memory ac-
cesses divided by level-2 cache misses) as a function of the
level-1 cache size and pipeline depth. The general trend for
the integer benchmarks shows that the miss rate decreases
as the level-1 cache size grows and as the pipeline depth
increases. For the floating point benchmarks, the general
trend is the same for increasing pipeline depths, but that the
miss rate is approximately the same for all level-1 cache
sizes. For reference, the total number of memory access
for the integer benchmarks ranges from 1.92 billion to 4.52
billion, while the floating point benchmarks have from 1.5
billion to 3.28 billion memory accesses. These low miss
rates show that the latency to access main memory has little
effect on the performance of these benchmarks.

5.6. Sensitivity Analysis

Two major architectural components that can have a sub-
stantial effect on the performance of a microprocessor are
the branch prediction scheme and the level two cache. As
others have pointed out, deep pipelines are more sensitive
to branch prediction behavior [5, 13]. In the experiments
performed here, the overall branch prediction accuracy is
above 90 percent, due to the aggressive prediction scheme
modeled. To test the sensitivity of the results to the branch
prediction scheme, a perfect branch predictor is tested on
pipeline depths of 7, 15, 25, and 50. Table 7 shows that
a perfect branch predictor improves instruction through-
put. However, the trend of shorter pipelines outperforming
longer pipelines remains unchanged.

Table 7. Sensitivity of results to the branch
prediction scheme.

Pipeline BIPS Perfect BIPS Non-Perfect
Depth Prediction Prediction

7 8.0238 7.0863
15 6.9314 5.9623
25 5.9562 5.0939
50 4.5718 3.8868

The level-2 cache size and access latency can have a sig-
nificant impact on performance, especially for low level-1
hit rates. All results presented here are based on a 2 Mbyte
4-way set-associative level-2 cache with an access latency
of 3.37 ns. To explore the impact of this assumption on
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Table 6. Level-2 Cache Miss Rates
Level-1 Depth 7 Depth 10 Depth 15 Depth 20

Cache Size (KB) Int FP Int FP Int FP Int FP

1 0.0177% 0.2935%
2 0.0172% 0.3343%
4
16 0.0138% 0.3069%
32 0.0221% 0.4710% 0.0180% 0.4036% 0.0149% 0.3451%
64 0.0145% 0.3444% 0.0130% 0.3050%
128 0.0216% 0.4686% 0.0174% 0.4022% 0.0142% 0.3438% 0.0127% 0.3047%
256 0.0210% 0.4640% 0.0171% 0.3985%
512 0.0195% 0.4583%

Level-1 Depth 25 Depth 30 Depth 40 Depth 50
Cache Size (KB) Int FP Int FP Int FP Int FP

1
2 0.0149% 0.2769% 0.0133% 0.2306% 0.0126% 0.2142%
4 0.0134% 0.2600%
16 0.0128% 0.2829% 0.0120% 0.2605% 0.0110% 0.2330% 0.0103% 0.4370%
32 0.0123% 0.2813% 0.0116% 0.2592% 0.0106% 0.2317% 0.0100% 0.2146%
64 0.0113% 0.2592% 0.0104% 0.2315%
128 0.0118% 0.2808% 0.0095% 0.2142%
256
512

the results, Figure 5 shows instruction throughput for four
pipeline organizations as the level-2 cache size is varied
from 256 kbyte to 16 Mbyte while the level-1 cache is held
constant at 32 kbyte. Smaller level-2 caches allow faster ac-
cess, but incur higher miss rates. The graphs show that to
a point, larger level-2 caches improve performance, despite
higher access latencies. Once this point is reached though
there is a performance dropoff. However, the key point to
notice is that the main conclusion of this work is unaffected
by level-2 cache organization.

Previous work has shown that the miss rates vary only
slightly (less than 1%) between a 4-way and fully asso-
ciative, unified 1MB, 64 byte block level-1 cache [4]. As
this study uses a unified 2MB, 64 byte clock level-2 cache,
changing the associativity is expected to have almost no im-
pact on performance, and is not presented here.

Other assumptions such as the ability to perfectly
pipeline all parts of the processor and the optimistically
modeled one-cycle branch prediction scheme give a per-
formance advantage to deeper pipelines. Consequently, the
observed trends are expected to hold under different, more
realistic assumptions.

6. Future Work and Conclusions

There are several avenues for fruitful future work in this
direction. First, a continued device analysis will be needed
to determine if the common use of FO4 delays as a process
independent method of scaling is accurate for aggressive,
deep-submicron technologies. Advances in processor mi-

croarchitecture, including aggressive value and dependency
speculation require more accurate modeling tools, but also
broaden the spectrum of design decisions that affect over-
all performance. Furthermore, other important workloads
such as commercial and e-commerce applications or large-
scale scientific workloads likely exhibit different character-
istics [5]. Finally, advances in VLSI design techniques and
cache implementations, such as those suggested in [8], the
use of a deeper hierarchy (such as three levels of on-chip
cache) and pipelined caches, can have a significant impact
on performance. Although this study focuses strictly on per-
formance, area and power are significant issues facing mod-
ern processor design that must also be considered during the
design of a microprocessor.

The simulation results show that, in general, lengthening
the pipeline of a microprocessor tends to reduce its perfor-
mance. The higher clock rates of deeper pipelines imply
smaller level-1 caches. The resulting higher miss rates are
not compensated for by the higher clock rates, resulting in
a performance degradation for deeper pipelines. A sensi-
tivity analysis with regard to level-2 cache organizations,
and branch prediction schemes confirms that the observed
trends are stable. By focusing on the interaction between
pipeline depth and frequency with level-1 cache perfor-
mance, this study complements previous work on pipeline
depth tradeoffs, and provides insights into another impor-
tant aspect of processor design.

The authors wish to thank the anonymous reviewers for
their helpful comments.
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Figure 5. Instructions per Second versus
Level-2 Cache Size, Data points Connected
by Pipeline Depth
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