
Systematic Approach of Fixed Point 8x8 IDCT and DCT 
Design and Implementation1 

Ci-Xun Zhang, Jing Wang, Lu Yu 
 

Institute of Information and Communication Engineering, 
Zhejiang University,  

Hangzhou, China, 310027
 

Abstract. MPEG has recently issued a CFP for 
voluntary fixed point 8x8 IDCT and DCT standards to 
ease the effort that is needed to implement the IDCT and 
DCT, and also to help ensure that decoders are 
implemented in conformance with the MPEG standard. 
This paper is conclusion and extension of our previous 
proposal responding to the CFP. A systematic approach 
of fixed point 8x8 IDCT and DCT design and 
implementation is proposed that approximate the ideal 
integer output IDCT and DCT with high fidelity. 
Performance and complexity issues such as bit width are 
discussed for different methods using this approach. The 
methods discussed in this paper can also be easily 
extended to IDCT and DCT with other size. 
Index Terms—DCT, IDCT, MPEG, standard 
 

1. INTRODUCTION 
Recently, MPEG has issued a CFP for voluntary 

fixed point 8x8 IDCT and DCT standards to ease the 
effort that is needed to implement the IDCT and DCT, 
and also to help ensure that decoders are implemented in 
conformance with the MPEG standard [1]. The proposed 
IDCT should satisfy all the accuracy requirements 
specified in [2] [3]. This paper is conclusion and 
extension of our previous proposal responding to this 
CFP [4]. In this paper, we propose a systematic approach 
of fixed point 8x8 IDCT and DCT design and 
implementation that approximate the ideal integer output 
IDCT and DCT with high fidelity. The paper is organized 
as follows. In section 2, a detailed description about the 
design and implementation of the proposed algorithm is 
presented. Performance and complexity issues such as bit 
width are also discussed for different methods using this 
approach. Section 3 concludes the paper.  
 

2. ALGORITHM DESIGN AND 
IMPLEMENTATION 
2.1 Algorithm Design 

The basic idea is to apply an exact mathematical 
equivalent to the following separable process: (For 
simplicity, we focus our discussion on IDCT and 
similar design approach can be applied for DCT.) 

1. Matrix multiply by the fixed point IDCT  
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matrix IDCTfp which is produced by multiplying the  
ideal IDCT matrix by sqrt(8)*2SCALE and rounding the 
resulting values to the nearest integer as given by (1).  
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2. Right shift by ROW_SHIFT bits (with 

rounding) after 1-D transform and COL_SHIFT bits 
after 2-D transform (also with rounding). The process 
can be either row-first ordering or column-first 
ordering. Without losing generality, we use row-first 
ordering here, and the process can be represented by  
(2) and (3) below: 
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3. Clip the 2-D transform output to the 

pre-defined IDCT output range. For 
SAMPLE_BITS-bit video sample data, this can be 
represented by (4): 
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Let INPUT_BITS denote the bit width of the 

IDCT input data and OUTPUT_BITS denote the bit 
width of the IDCT output data. INPUT_BITS and 
OUTPUT_BITS are given by (6) and (7) respectively 
[1]: 
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The relationship of INPUT_BITS and 

OUTPUT_BITS is given by (8): 
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Combining (6), (7), (8) we can get: 
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and thus: 

 
 1 2SCALE n or SCALE n n= = + ∈Z . (10) 

 
In this paper, we only consider the methods with 

positive SCALEs. Similar methods with practically 
negative SCALEs (but not rounded to nearest integers) 
are discussed in [7]. 

Note here that conceptually different SCALEs 
can be used for column and row transform. However, 
the above derivation is based on using same SCALE 
for both column and row transform. Such an 
arrangement is of significant importance for 
DCT/IDCT chip designs, since only one single 
butterfly structure implementation is needed. 

Bit width is a major issue in the design of the 
IDCT especially in hardware implementation, and 
serves as an important complexity consideration when 
choosing a specific IDCT design. Assuming the IDCT 
input is the theoretical DCT output (without 
quantization/dequantization or possible error, etc), a 
good estimation of the bit-widths is as follows: 

The bit width of theoretical 1-D IDCT output 
value is: 
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The bit width of theoretical 2-D IDCT output 

value is: 
                      .                    
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The bit width of theoretical maximum bit width 

of intermediate value during the transform process is: 
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From (11), (12), (13) we can see that the bit 

widths are mainly determined by the parameters 
SCALE, ROW_SHIFT, and COL_SHIFT. (there are 
actually only two free variables among three.) The 
method described above is denoted as (SCALE, 
ROW_SHIFT, COL_SHIFT) in this paper. 

2.2 Implementation Schemes 

Among all possible methods that meet all the 
accuracy requirements, the method (13,11,18) is 
proposed because it is accurate, fast and cost effective. 
It is similar to the method adopted by the Independent 
JPEG Group in its popular JPEG implementation but 
better and more elegant [4] and has lower 
implementation complexity than that in [5]. Not like 
many multiplier-less methods [13]-[19], it can be 
implemented in many different ways that are 
mathematically equal in output value. In the following, 
four different implementation schemes are studied and 
compared. 

Scheme 1: The proposed method can be 
implemented using the butterfly structure in [6] with 
12 multiplications and 32 additions. However, from 
(10), we can see that SCALE can be non-integer, so 
we use 14 multiplications in Figure 1 to also take 
these cases into consideration. The two multipliers in 
the upper two paths of the butterfly structure can be 
replaced by two shifters when SCALE is an integer. 
The advantage of this structure is that all the 
multiplications in each of the two separable stages of 
the transform can be implemented in parallel with 
each other. Note that the apparent rounding offset 
used before the right shift in every 1-D transform can 
be implemented by just adding a constant to the DC 
term near the beginning of the process. 

For a fixed point IDCT matrix derived by (1), the 
parameters in the butterfly structure in Figure 1 can be 
obtained by (14) and assured to be solvable and 
unique. This is mainly due to the fact that there is at 
most one multiplication in every path inside the 
butterfly structure. Theoretical analysis shows that for 
8-bit video sample data, only 16bit signed by signed 
multiplications is needed to implement the method 
(13,11,18). 
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Scheme 2: The butterfly structure of scheme 1 is 
also used here. However, in scheme 2, we replace the 
multipliers in the butterfly structure with 
VLSI-friendly coefficients using shifters and adders. 
There are many methods of decomposing constant 
integer multipliers into representation of shifters and 
adders. One common method is by using Canonic 
Signed Digit (CSD) representation which requires 
33% fewer nonzero digits than binary [8] [9]. Optimal 
methods based on the graph representation of the 
multipliers are described in [10] [11] but parallel 
implementation may be harmed. 

The total number of adders of different methods 
with SCALE from 10.5 (We note that SCALE as 
small as 10.5 may suffice to achieve all precision 
requirements. It is shown in [5] that the smallest 
SCALE is 11 because non-integer SCALE is not 
considered there.) up to 16 are also calculated and 
given in Table 1. Some examples can be seen in [20]. 
It is expected that when SCALE is not an integer, 
comparatively more shifters and adders are needed. 
The methods with SCALE equal to 13 seem to be 
most cost effective ones (Detailed accuracy and bit 
widths of methods with different SCALE values can 
be seen in [20].) and even need fewer adders than 
methods with SCALE equal to 12 in the optimal 
sense. 

Table 1. Number of adders with SCALE values from 
10.5 up to 16 

 CSD Optimal 
SCALE=10.5 82 73 
SCALE=11 75 70 
SCALE=11.5 88 78 
SCALE=12 78 73 
SCALE=12.5 95 83 
SCALE=13 81 72 
SCALE=13.5 98 84 
SCALE=14 87 77 
SCALE=14.5 100 85 
SCALE=15 94 81 
SCALE=15.5 109 90 
SCALE=16 99 82 

 
Scheme 3: On PCs with MMX/SSE/SSE2/SSE3 

or other platforms with SIMD instruction, 
implementations using matrix multiplication can be 
even faster than butterfly-structure implementations 
though there are more operations. In scheme 3, we use 
the "chain matrix multiplication" scheme presented in 
[12], where it is originally used to do efficient 4x4 
matrix multiplication. Here we adapt it to 8x8 matrix 
multiplication as follows. The row transform is first 
calculated (Figure 2), and then the column transform   
(Figure 3). One major problem when using SIMD 

instruction is that it is costly to load column vector of 
a matrix into an SIMD register. This scheme 
effectively avoids this problem by pre-arranging the 
input data and introducing a structure which assures 
that the intermediate results stored in the resulting 
register are just in the right order for the next step of 
matrix multiplication, thus no shifting or abundant 
loading operations are needed. 

Scheme 4: In scheme 4, we use the well known 
hybrid structure based on (16) and (17). By using this 
scheme, we expect to have both advantages of matrix 
multiplication and butterfly structure.  
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2.3 Experimental Results and Analysis 
Average run time of each implementation scheme is 
obtained by running 100000 different 8x8 DCT 
coefficient matrices on PC platform and the results are 
given in Table 2. Because the butterfly structure in 
scheme 1 and scheme 2 is not as regular as that used 
in scheme 3 and scheme 4, when implemented using 
SIMD instruction, a larger number of 
pack/unpack/shuffle operations are needed and the 
speed is rather decreased than increased. So in our 
tests, we only use the compiler optimization options 
for C code as a relative fair comparison. It should be 
noted that although additions and shifts can be 
implemented faster than multiplications, scheme 1 and 
scheme 2 just have similar speed performance. This is 
because on average 4 shifts and additions are needed 
to replace one multiplication in scheme 2, and it may 
even reduce the speed when implemented on PCs. It is 
also shown that scheme 3 and scheme 4 run much 
faster than the other two schemes and scheme 4 is the 
fastest among all tested. Scheme 4 needs about half 
the time of scheme 3 mainly because the operation 
count in scheme 4 is about half of that in scheme 3. In 
fact, it is shown in [4] that scheme 4 is also much 
faster than some multiplier-less IDCT implementation 
schemes which takes much less operations to 
implement. Experimental results on other platforms 
such as DSP, ASIC and corresponding analyses are 
also presented in [4]. 



Table 2. Experimental results on PC platform 

Implementation Scheme 
Description 

Average 
Run Time

Reference floating-point IDCT 
(matrix multiplication. implemented 
with C) 

1023ms 

Scheme 1 (implemented with C) 94ms 
Scheme 2 (implemented with C) 96ms 
Scheme 3 (implemented with SSE2) 40ms 
Scheme 4 (implemented with SSE2) 20ms 

 

2.4 Advantages 
It is well known that there are many fast IDCT/DCT 
implementations incorporating the scaling factors into the 
dequantization step [13]-[16]. However, the proposed 
methods have the following advantages: 
1. The fixed point IDCT/DCT matrix is derived from 

theoretical IDCT/DCT directly, and results in 
conceptually simple and straightforward design. 

2. The proposed algorithms affect only the basic 
IDCT/DCT functional blocks and does not entangle 
with quantization/de-quantization processes. Thus 
dequantization matrix is not needed and potential 
loss in performance is avoided [4]. 

3. There is no right shift in every 1-D transform so that 
different specific implementations yield exactly the 
same output result. This gives flexibility of different 
implementation on different platforms which can not 
be offered by multiplier-less methods [13]-[19]. 

 

2.5 Further Improvements and Observations 
The specific method (13,11,18) is one of the most cost 
effective among all the possible methods that can 
meet the accuracy requirements. However, if the strict 
condition (16bit output of 1-D IDCT, 16bit signed by 
signed multiplication in scheme 1, etc) is loosed, then 
there are many more possible methods that can give 
better precision than (13,11,18). The detailed results 
are given in [20]. 
The following conclusions can be drawn from the 
experimental results: 
1. The bit widths enough for pseudo-random test in 

[1] coincides with corresponding theoretical 
values for 8-bit video sample data (see (11), (12), 
(13)). 

2. Perfect match to ideal integer output IDCT for all 
“near-DC” tests will be obtained when the bit 
width of the 1-D IDCT output is getting larger (16 
bit or more). 

3. All methods with non-integer SCALE have 
“near-DC” test results equal to 1. We believe the 
main reason is the two inaccurate approximated 

multipliers in the upper two paths of the butterfly 
structure in these cases. Further, this 
approximation error will propagate to all output 
terms during the final stage in the IDCT butterfly 
structure shown in Figure 1. 

4. The methods with SCALE equal to 13 or 14 seem 
to be better than others. For example, (13,9,20) 
and (14,10,21) can be chosen for very high 
fidelity applications. They are comparable to the 
methods in [17]-[19] considering the operation 
counts using additions and shifts in the optimal 
sense. 

5. Different accuracy versus complexity trade-offs 
can be easily achieved with same pre-defined 
SCALE value by adjusting ROW_SHIFT and 
corresponding COL_SHIFT according to (9). No 
change of the multipliers or its 
adder-shifter-representation is needed which is 
required by many multiplier-less IDCT schemes 
[15]-[19] [13]. 

 

3. CONCLUSION 
In this paper, a systematic approach of fixed point 8x8 
IDCT and DCT design and implementation is proposed 
that approximate the ideal integer output IDCT and DCT 
with high fidelity. Performance and complexity issues 
such as bit width are discussed for different methods 
using this approach. The methods discussed in this paper 
can also be easily extended to IDCT and DCT with other 
size. 
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Fig. 1. IDCT Butterfly structure (including rounding) 



 

Fig. 2. Efficient 8x8 matrix multiplication – I 

 

Fig. 3. Efficient 8x8 matrix multiplication – II 

 


