
Consensus Genetic Maps:
A Graph Theoretic Approach

Benjamin N Jackson
Dept. of Electrical and Computer Engineering

Iowa State University
Ames, IA 50010

zbbrox@iastate.edu

Srinivas Aluru
Dept. of Electrical and Computer Engineering

Iowa State University
Ames, IA 50010

aluru@iastate.edu

Patrick S Schnable
Center for Plant Genomics

Iowa State University
Ames, IA 50010

schnable@iastate.edu

Abstract

A genetic map is an ordering of genetic markers con-
structed from genetic linkage data for use in linkage stud-
ies and experimental design. While traditional methods
have focused on constructing maps from a single popula-
tion study, increasingly maps are generated for multiple
lines and populations of the same organism. For exam-
ple, in crop plants, where the genetic variability is high,
researchers have created maps for many populations. In
the face of these new data, we address the increasingly im-
portant problem of generating a consensus map—an order-
ing of all markers in the various population studies. In our
method, each input map is treated as a partial order on a
set of markers. To find the most consistent order shared be-
tween maps, we model the partial orders as directed graphs.
We create an aggregate by merginging the transitive closure
of the input graphs and taking the transitive reduction of the
result. In this process, cycles may need to be broken to re-
solve inconsistencies between the inputs. The cycle break-
ing problem is NP-hard, but the problem size depends upon
the scope of the inconsistency between the input graphs,
which will be local if the input graphs are from closely re-
lated organisms. We present results of running the resulting
software on maps generated from seven populations of the
crop plant Zea Mays.

1 Introduction

Genetic maps are a useful tool for researchers study-
ing genetic linkage and genome structure and evolution.
They have been used in designing experiments and for scaf-
folding during genome assembly. While traditionally re-
searchers have focused on creating a single reference map

from a single population, recently, with the push towards
comparative genetics, researchers have been gathering data
from multiple populations and lines of the same species.

This trend has identified issues in interpreting a reference
map; in some organisms rearrangements occur even with
little evolutionary distance. For example, a recent study
identifies significant gene rearrangements between differ-
ent lines of maize [2]. This knowledge does not remove the
need for a reference map, but it does introduce the need for
care in both creating the map and interpreting it correctly
for a specific population.

We address the need to create a consensus map from
these diverse input sources. To this end, we must deal with
two types of inconsistencies in the input. First we wish
to eliminate inconsistent orders resulting from experimen-
tal error. As we discuss below, the method by which these
maps are constructed is much more likely to produce local
errors in marker order than global errors. Second, we wish
to identify and effectively address more significant incon-
sistencies in order. We will accomplish both of these goals
through the use of graph algorithms, as described in Section
2.

1.1 Genetic Maps

Diploid organisms contain two copies of each chromo-
some, termed a pair of homologous chromosomes. Each
member of a pair carries a copy (allele) of each gene. If the
two alleles are the same the organism is said to be homozy-
gous for the gene. Conversely, if the two alleles are different
the organism is said to be heterozygous for the gene.

During the sexual reproduction of a diploid, genetic
material from each member of homologous chromo-
somes mixes to create recombinant daughter chromosomes
through a mechanism known as crossing over. A conceptual

1



mathematical model of crossing over treats the creation of
the recombinant chromosome from a pair of parental chro-
mosomes as follows. Each chromosome is modeled as a se-
quence of alleles. The recombinant chromosome is created
by scanning the sequences of the two members of the pair
of homologous parental chromosomes in parallel, copying
one of the sequences into the sequence of the recombinant
chromosome. At some point copying switches to the second
sequence. This event is called a crossover. In the course of
creating the recombinant chromosome, multiple crossovers
can occur.

Given the genotype of the parent and the progeny and
a large rate of heterozygocity, one can deduce if the alle-
les of two genes on a recombinant chromosome came from
the same or different chromosomes in the parent. The fre-
quency at which the alleles of two genes came from dif-
ferent chromosomes among the individuals in the mapping
population is called the recombination fraction [18]. It is
worth noting that two close genes will have a small recom-
bination fraction, while two distant genes will have a frac-
tion of about .5, as an odd or even number of crossovers is
equally likely to occur between the two genes.

Many programs exist to handle the task of constructing
a genetic map, and they all make use of the ideas presented
above. Of interest to us is that given a pair of markers, it
is easy to label them as close or distant. By applying this
judgment universally, it is apparent that each marker will be
placed fairly certainly in the proper neighborhood while its
exact position may be incorrect.

The maximum likelihood method of map generation
characterizes the probability of an ordering and then at-
tempts to find the ordering with the maximum probability
[5, 10, 11, 14, 18, 19]. The method produces an order by
looking at the data in a holistic way, which aids in accuracy.
However, as the number of markers mapped or the size of
the population in the studies increases, the runtime of the
method increases prohibitively.

Newer methods formulate the marker ordering problem
as the traveling salesman problem (TSP) [13]. Using the
pairwise distances between each marker, they attempt to
find an ordering of the markers with minimum total length.
The TSP problem is well studied, and while it is NP-hard,
good approximation algorithms exist. These have been ap-
plied to the map generation problem [4, 15, 16]. They run
quickly and allow larger problem instances to be approxi-
mately solved.

1.2 Consensus Maps

The first software to combine data from multiple map-
ping studies was JoinMap [20, 22]. JoinMap uses a statisti-
cal, data pooling approach.

Our method uses combinatorics in solving the problem.

We consider a genetic map to be a partial order and model
it as a directed acyclic graph (DAG). Nodes in the graph
correspond to markers in the map, while edges correspond
to the ordering of markers in the map. We combine DAGs
from different studies into a single DAG that represents the
consensus map, making use of the property that the input
graphs will likely only disagree locally.

The first paper to model genetic maps as DAGs was [23].
Their goal was to aggregate data, while we are interested in
conflict resolution and coming to a consensus. Thus they do
not explicitly treat the maps as partial orders, use the transi-
tive reduction/closure operations as we describe, and use a
different method of graph merging. [17] uses similar ideas
to reason about partial orders in the context of artificial in-
telligence.

Our model provides a number of benefits when applied
to the problem.

1. As long as the inputs disagree on a local scope, the
software is able to find the combinatorially best con-
sensus.

2. Modeling the input as a partial order instead of a lin-
ear order allows for flexibility in specifying the input
maps.

3. Because it processes finished maps, the method fin-
ishes within seconds or minutes.

In addition, the software described presents a number of
useful features.

1. The input to the software is a .xml description of the
maps.

2. The resulting map displays any discrepancies between
the inputs.

3. The resulting map is annotated with information about
which input maps contain which marker, which is use-
ful for analysis.

4. The software outputs the input maps and the consensus
map in .gdl format, which can be read by interactive
map drawing software that is free for academic use.

2 Approach

We model a genetic map as a partial order on a set of
markers. We represent the data as a directed acyclic graph
(DAG) G = {V, E}. The vertex setV of the graph cor-
responds to the set of markers in the map. An edge(u, v)
exists inE for nodesu andv if u comes beforev in the
input map and there is no other nodek ∈ V with edges
(u, k) ∈ E and(k, v) ∈ E. We say thatv follows u or v is
reachable fromu if there exists a path in the graph fromu to

2



v, denoted〈u, ..., v〉 ∈ G. The set of edges in our graph is
the minimum size set of edges that captures all the ordering
information for the set of markers. This graph is also known
as a transitively reduced graph because of this property. In
this paper we will make implicit use of the connection be-
tween a partial order and a DAG by referring to the order of
the DAG and the graph of the order.

Given a set of DAGs{G1, G2, ...Gn}, we wish to cre-
ate a DAG,GC , whose order is the consensus order most
consistent with the input orders, which might be inconsis-
tent. For example, one map might have the path〈a, ..., b〉,
while another map might have〈b, ..., a〉. If no inconsisten-
cies exist, then the resulting order can be easily calculated
as the superposition of the input graphs. However, given
experimental data this is not likely.

In fact, if dealing with maps from different lines of the
same plant, both inputs might be “correct” in that the genes
in question might have different orders. However, for the
purposes of this paper, we wish to create a resulting order
by choosing between alternatives as much as possible. We
will present to the user information about which decisions
were made in reaching the consensus. In this way, large
scale inconsistencies can be interpreted and dealt with.

We propose a four stage method for generating the con-
sensus. First, we run a transitive closure algorithm on the
input graphs. Next, we combine these graphs into a single
graph that may contain cycles. Third, we break cycles in the
aggregate. Finally, we run a transitive reduction algorithm
to produce the result.

2.1 Transitive Closure

A transitive closure of a graphG = {V, E} is a graph
G′ = {V ′, E′} such thatV ′ = V andE′ consists of all
edges{(u, v)|〈u, ..., v〉 ∈ G} [8].

For the purposes of our algorithm, we will a weight to
each pair of nodes, corresponding to our confidence in their
ordering. We define the the weightw(u, v) as the shortest
path fromu to v in G. We definew(v, u) = −w(u, v) and
w(u, v) = 0 if neither 〈u, ..., v〉 ∈ G nor 〈v, ..., u〉 ∈ G.
Our weighting scheme comes directly from our knowledge
that local mistakes in order are much more likely than global
mistakes. Ifv directly followsu, we are less confident of the
order than ifv follows u with several markers in between.

We calculate all the pairwise shortest paths between
nodes using the classic Floyd-WarshalO(n3) algorithm [6].
The pairwise shortest paths algorithm creates the transitive
closure by reporting a positive shortest path for any pair of
nodesu andv with v reachable fromu. After the algorithm
has finished, negative weights are assigned to the symmetric
pair for each pair with a positive weight.

2.2 Aggregate Graph

The nodes in each input graph correspond to markers in
the global set of markersU . For some nodev in Gi, there
could exist some equivalent nodev′ in Gj with v andv′

corresponding to the same marker inU . Therefore, we must
create a global index for identifying markers. Let the set of
all markers in the input mapsU = V1 ∪ V2 ∪ ...∪ Vn be the
global marker index of size‖U‖ = t. Then we can create a
mapping of any nodev, f(v) = i, 1 ≤ i ≤ t.

We represent the graphG′

i using at × t size matrixMi

such thatM [f(u), f(v)] = w(u, v). We can construct a
global mapGA by taking the summationMA =

∑n
i=1 G′

i.
The nodes ofGA are all markers in the universe. An edge
(u, v) exists inGA if M [u, v] > 0. MA can be thought of as
the results of a vote. Each map has a weighted vote it casts
for the ordering of nodesu andv. After tallying the votes
of each map, the result inGA is thatu comes beforev or v

comes beforeu, or they exist on alternate paths through the
graph.

2.3 Cycle Breaking

The voting scheme used when creating the aggregateGA

deals with direct pairwise inconsistencies between the input
maps by allowing a weighted majority to decide the order-
ing of each pair of markers. However, other inconsistencies
can arise transitively. A majority of input maps might say
thatv follows u, w follows v, andu follows w. In this case
GA contains a cycle denoted〈u, v, w, u〉 and no final con-
sensus order can be calculated before the cycle is broken.

We use the weights assigned to each edge in finding the
optimal way to break cycles. The weight corresponds to
the confidence we have in a particular ordering of mark-
ers, and we wish to remove those orderings that we have
the least confidence in. To optimally break cycles, we re-
move that set of edgesEc such that the sum of all weights
on those edges is minimum and all cycles are broken. The
cycle breaking problem is known to be NP-hard [7].

We will model this problem as the set cover problem.
Given a universal setU = {e1, e2, ...en} and a set of sets
of elements fromU , S = {s1, s2, ...sm}, find a minimum
sized subsetS′ such that

⋃
si∈S′ si = U . The weighted

version of the set cover problem additionally weights each
setw(si), and asks to find the subsetS′ that coversU with∑

si∈S′ w(si) minimized.
Let UC be the set of all simple cycles inGA andC(u, v)

be the set of cycles of the form〈a, ..., u, v, ..., a〉, that is all
cycles containing the edge(u, v). In order to break all the
cycles, we must find a set of edgesEc to remove from the
graph, such that that

⋃
(ui,vj)∈Ec

C(ui, vj) = UC . In order
to break cycles optimally, we want

∑
(ui,vj)∈Ec

w(ui, vj)
to be minimized. Obviously, if we consider the set of all

3



cycles to beU , let S be the set of allC(u, v) and let the
weightw(C(u, v)) = w(u, v), this formulation of the cycle
breaking problem is equivalent to the weighted set cover
problem as described above.

The first step in breaking cycles is to enumerate the sim-
ple cycles in the graph. We will use the method proposed by
Johnson [9] which finds the cycles inO(C(V + E)) time,
whereC is the number of simple cycles in the graph. The
details are omitted here.

The number of cycles in the graph could be exponen-
tial, but is limited by the size of each strongly connected
component. Therefore the size of each strongly connected
component must be small for any solution involving enu-
merating cycles to be feasible. Data reduction methods re-
duce the input size by removing both sets and elements from
the universe. We use the following three rules to reduce the
problem size [21].

1. If si ⊆ sj andw(si) ≥ w(sj), thensi can be removed
from consideration. In this case, under any condition
that one might choosesi, one could choosesj and be
no worse off.

2. If for all si, ek ∈ si ⇒ el ∈ si, thenek can be removed
from consideration. Any set that coversel also covers
ek.

3. If elementek only appears in setsi, then setsi must be
selected, and all elementsel ∈ si should be removed
from consideration, as they have been covered by the
selection ofsi.

These three rules are repeatedly applied to the input data
until no more reduction occurs. A solution to the prob-
lem will be an assignment of inclusion or exclusion to each
edge. We search the solution space using a basic branch and
bound technique [3].

Each strongly connected component of the cyclic graph
GA is considered independently. As long as the disagree-
ment among input graphs is local, the size of these strongly
connected components and number of cycles will be small,
and solving the problem exactly is feasible. On the other
hand, if an input disagrees with the general consensus be-
cause of large rearrangement, then we must deal with larger
connected components.

The greedylog(n) approximation of the set cover prob-
lem works as follows. Initialize the solution to be empty.
Next, repeatedly choose the setM that contains the most
uncovered elements, and add it to the solution, covering all
uncovered elements inM until all elements are covered.
This approximation will be used to break apart large con-
nected components.

We cannot enumerate the cycles because the number of
cycles can be exponential in the size of the component. In-
stead, we will approximate the ratio of cycle count on each

edge to the total number of cycles in the graph by repeat-
edly selecting a cycle in the connected component and in-
crementing a counter on each edge along that cycle. To ran-
domly select a cycle, we first randomly select some starting
nodes. Then we perform a randomized depth first search
through the graph until we reachs. The path through the
DFS tree〈s, ..., s〉 is taken as a random cycle in the graph,
and we accumulate a value along the edges of that cycle.

After many repetitions, we scan the component to find
the edge with maximum accumulation, and remove this
edge from the graph. Removing this edge reduces the size
of the connected component, and may break the connected
component into smaller connected components.

Thus the flow of the cycle breaking phase is to initially
enumerate the connected components and place them in a
queue. While the queue is not empty, deque the next com-
ponent and optimally break it if it is small. If it is large, use
the greedy approximation to remove a single edge, rerun
the connected component algorithm on the subgraph, and
place any new connected components in the queue. When
the queue becomes empty, all connected components in the
graph have been broken.

The algorithm combines approximation with the exact
solution to find a good solution quickly, invoking the ap-
proximation algorithm only if necessary. If the input maps
are reasonably consistent, the approximation scheme is
never used. We will further discuss implications of this in
Section 4.

2.4 Transitive Reduction

Once the cycles are broken in the input graph, the final
step of the algorithm is to run a transitive reduction. This
can easily be done inO(n3) time using the conceptual in-
verse of the Floyd-Warshal algorithm [1]. The details are
omitted here.

2.5 Drawing the Map

The result of this process is a directed acyclic graph with
the minimum number of edges required to capture the or-
der information contained therein. To display this graph,
we make use of interactive graph drawing software aiSee
(www.aisee.com) which is free for academic use. The out-
put of our software is a .gdl file which is input to aiSee. An
image of the resulting graph is shown in Figure 1.

3 Results

We implemented the described method as a Java program
(available upon request). We ran this software on synthetic
data and experimental data. The synthetic data sets were de-
signed to test both the software’s ability to run efficientlyin

4



the face of local inconsistencies among input sets as well as
its ability to correct for those errors by finding the best or-
der given conflicting data. The approximation scheme was
not needed for this data. The real data set consisted of data
gathered from seven populations of the crop plantZea mays.

We will first discuss the synthetic data. As argued earlier,
maps tend to be more correct in the ordering of genes at
larger distances. Local mistakes are likely as the reversalof
two adjacent markers only minimally changes the distance
between each of these markers and the global set. Therefore
we created synthetic data in which errors occur at a local
level, simulating experimental error.

We make the assumption that a true ordering exists, and
the actual ordering of genes on the synthetic chromosome is
said to be the natural ordering of numbers between 1 andn.
To create a partial mapMi of this chromosome, we choose a
subsetSi of sizesi of then numbers as the markers ordered
in Mi. To introduce error, we performxi random alterations
of the map, each alteration corresponding to a swapping of
adjacent markers.

We wish to ascertain if software halts in reasonable time
with an answer (in other words, that the number of cycles
generated in the consensus graph is small), and we also wish
to measure the quality of the resulting order. The quality is
measured by counting the edges in the resulting DAG. Any
time a nodei precedes a nodej, buti > j using the natural
ordering of numbers, we count this ordering as incorrect.

By counting both the edges of transitively reduced di-
graphn and the incorrect edges in the digraphb, we can
calculate a score for the result by taking the ratiob

n
. We

then vary the number, completeness, and correctness of in-
put maps and measure the resulting accuracy of the output
map.

In the synthetic data, the number of maps generated,
which varied between 3 and 9, did not have an effect on
the correctness of the output. We are not worried about
completeness when looking at the synthetic data. In real
data, the number of maps is important as they each will of-
ten have exclusive markers and information not found in
others. However, given the nature of the synthetic map gen-
eration, each map is as likely as any other to contain some
bit of information. Therefore, five maps were generated for
the analysis.

The two other variables, completeness and correctness
did have a substantial effect on the quality of the results.
The completeness of the maps effects the amount of over-
lap between two maps, and the more markers are shared
between maps, the more likely errors can be corrected by
the voting scheme. The number of errors introduced in the
inputs more directly affects the number of errors in the out-
put.

For all inputs, the resulting cycle breaking problems
turned out to be small enough to be solved directly, and the

program ran in a matter of minutes or seconds, depending
upon the data. The results are presented in Figure 2. Each
point represents an average of 5 randomly generated inputs.

The maize mapping data used in the study was assem-
bled at the Center for Plant Genomics at Iowa State Univer-
sity in collaboration with the laboratory of Abraham Korol
at the University of Haifa. Six populations of maize were
mapped, labeled population A-F, with each map sharing a
large number of markers. The maps also shared markers
with the previously mapped IBM population [12].

The software used to develop the individual map for each
line is presented in [16]. There are two versions of the ge-
netic map generated by this software. The skeletal map is
less complete but more accurate as it consists of the set of
markers whose order remains invariant after applying the
statistical technique of bootstrapping. The second more
complete map adds additional markers by attaching each
additional marker to the skeletal marker to which it is con-
sidered closest.

The maize genome has 10 chromosomes, and a consen-
sus map for each chromosome was assembled by the soft-
ware from the complete maps. For chromosomes 3,4,5,7,9,
and 10, the mapping software produced a result without
having to do any approximations: all errors were local.
However, for chromosomes 1,2, and 6, map B showed a
large scale disagreement with the consensus order. For
chromosome 8, map F showed a large disagreement. By
removing the offending maps from the input, consensus or-
ders could again be easily produced without resorting to the
approximation scheme. Figure 1 shows the graph visualiza-
tion software aiSee. Figure 3 shows the consensus map of
chromosome 1 with map B included, while Figure 4 shows
the consensus map with map B excluded from the input.

5



Figure 1. The graph viewing software aiSee.

a) b)

0

0.05

0.1

0.15

0.2

0.25

50 75 100 125 150

Input Map Size (completeness)

C
o

n
se

n
su

s 
E

rr
o

r 
R

at
io

5 Errors 10 Errors
15 Errors 20 Errors

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20

Errors

C
o

n
se

n
su

s 
E

rr
o

r 
R

at
io

50 markers 75 markers
100 markers 125 markers
150 markers

Figure 2. a) The error ratio in the consensus map versus input error rate on synthetic data. b) The
error ratio in the consensus map versus input completeness synthetic data. There are 200 total
markers on the synthetic chromosome.

6



4 Discussion

The creation of genetic maps is a heavily studied area in
computational biology. While many methods of generating
maps from raw data have been explored, the main software
available to join multiple maps has been JoinMap, which
uses a statistics based approach and data pooling.

We use graph algorithms to solve this problem. While
finding the exact solution is NP-hard, the problem sizes of
the NP-hard subproblems depend on the inconsistency in
the input. As long as the inconsistency is local, the problem
remains exactly solvable. This is because the size of the
cycle-breaking problem is limited by the size of the graph’s
strongly connected components.

A more complete software can handle large scale differ-
ences by using an approximation scheme. Our software will
switch into an approximation mode if faced with such a sit-
uation.

The resulting consensus map embodies the entire set of
gene order information, as it combines the data from var-
ious inputs. The consensus map graph is transitively re-
duced, and in addition to the order, provides three pieces of
information. First, it shows in red the edges removed dur-
ing cycle breaking to reach the consensus. Second, it shows
the ratio of ‘yes’ votes to total votes as edge line thickness.
Finally, it tags each maker with the set of input maps that
marker occurred in, shown as a string of pluses and minuses
(see Figure 1). For example, a tag of “−−+−++−” would
indicate that a marker was found in inputs 3, 5, and 6.

This graph could be used in identifying those areas of the
chromosome with a large amount of ambiguity. If result-
ing graph is very wide or there exist two long independent
paths between nodesu andv, then there is a lot of missing
information about the relative ordering of nodes on differ-
ent paths. We can use the graph to prioritize the design of
laboratory experiments to fill in the missing information.

The technique is designed for creating aggregate maps
from closely related organisms. The technique is less use-
ful the more evolutionarily disparate the two organisms are,
as it is more likely that large scale rearrangements will have
occurred during evolution. The technique can locate such
differences, but they must be dealt with outside of the soft-
ware for the consensus to be meaningful.

In our experiment, we chose to remove from the aggre-
gate those maps that showed a rearrangement when com-
pared to the general consensus. Alternatively, one could
envision aligning such maps with the consensus through a
series of reversals of subgraphs. By performing the inverted
set of reversals on the consensus, we could infer a likely
consensus for the differing maps. This would require future
research.

This method could be used in map creation. An alterna-
tive approach to making a map from all the data would be to

Figure 3. Consensus map for chromosome 1.
Dashed edges correspond to edges removed
during cycle breaking.

7



Figure 4. Consensus map for chromosome 1
without population B.

divide the data from a mapping experiment into overlapping
subsets, use maximum likelihood techniques on these sub-
sets, and combine the results into a consensus map. It would
be interesting to compare this method of map generation to
a TSP method.

An extension of the method would allow flexibility in the
weighting the edges of the input graphs. Individual edges
could be weighted based on some criteria, perhaps based
on the genetic distance between markers. Additionally, one
could weight each map based on perceived quality (e.g. the
number of individuals in the mapping population). The goal
of these weighting schemes would be to produce a higher
quality consensus.

The presented method does not assign distances to the
consensus. Unfortunately, genetic distances do not directly
compare between studies or even along the chromosome in
the same study. Some sort of complex normalization would
be needed to address this issue.

5 Conclusion

We presented a method for creating consensus genetic
maps from different populations and experiments for a
species. This method solves the consensus map problem
by modeling the inputs as inconsistent partial orders and
uses combinatoric ideas and a graph theoretic approach in
reaching an optimal solution. Despite containing an NP-
hard subproblem, the software runs quickly on actual data,
as the data exhibits the property of disagreements being lim-
ited to a local scope. We validated the solution on synthetic
and experimental data and constructed consensus maps for
an important crop plant, maize.

References

[1] A.V. Aho, M.R. Garey, and J.D. Ulman. The transi-
tive reduction of a directed graph.SIAM Journal on
Computing, 1(2):131–137, 1972.

[2] S. Brunner, K. Fengler, M. Morgante, S. Tingey, and
A. Rafalski. Evolution of dna sequence nonhomolgies
among maize inbreds.The Plant Cell, 17:343–360,
2005.

[3] T.H. Corman, C.E. Leiserson, R.L Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
2003.

[4] R. Doerge. Constructing genetic maps by rapid chain
delineation.Genetics Research, 69:35–43, 1996.

[5] C.T. Falk. Preliminary ordering of multiple linked loci
using pairwise linkage data.Journal of Quantum Trait
Loci, 2, 1992.

8



[6] R.W. Floyd. Algorithm 97: Shortest path.Communi-
cations of the ACM, 5(6):345, 1962.

[7] M.R. Gary and D.S. Johnson.Computers and In-
tractability: A guide to the theory of NP-completeness.
1979.

[8] A. Goralcikova and K. Koubek. A reduct-and-closure
algorithm for graphs.Mathematical Foundations of
Computer Science, 74:301–307, 1979.

[9] D.B. Johnson. Finding all the elementary circuits of a
directed graph.SIAM Journal on Computing, 4(1):77–
84, 1975.

[10] S. Knapp, C. Echt, and B.H. Liu. Genome mapping
with non-inbred crosses using gmendel 2.0.Maize Ge-
netics Cooperation Newsletter, 66:22–79, 1992.

[11] E. Lander, P. Green, J. Abrahamson, A. Barlow, M.J.
Daly, S.E. Lincoln, and L. Newburg. An interactive
computer package for constructing primary genetic
linkage maps of experimental and natural populations.
Genomics, 1:174–181, 1997.

[12] M. Lee, N. Sharopova, W.D. Beavis, D. Grant,
M. Katt, D Blair, and A. Hallauer. Expanding the ge-
netic map of maize with intermated b73 mo17 (ibm)
population. Plant Molecular Biology, 48:453–461,
2002.

[13] B.H. Liu. The gene order problem, an analog of the
traveling salesman problem.Plant Genome 95, 1995.

[14] T.C. Matice, M. Perlin, and A. Chakravert. Multimap:
An expert system for automated genetic linkage map-
ping. In Proceedings of the 1st International Con-
ference on Intelligent Systems for Molecular Biology,
pages 260–265, 1993.

[15] D. Mester and O. Braysy. Fast and high precision algo-
rithms for optimization in large-scale genomic prob-
lems.Computational Biology and Chemistry, 28:281–
289, 2004.

[16] D. Mester, E. Ronin, E. Nevo, and A. Korol. Con-
structing large scale genetic maps using evolutionary
strategy algorithm.Genetics, 165:2269–2282, 2003.

[17] A. Montanary and F. Massimo. Pairing transitive clo-
sure and reduction to efficiently reason about partially
ordered events. InProceedings of the Congress of the
Italian Association for Artificial Intelligence, pages
208–217, 1999.

[18] J. Ott. Analysis of Human Genetic Linkage. 1985.

[19] T. Schiex and C. Gaspin. Carthagene: constructing
and joining maximum likelihood genetic maps.Pro-
ceedings, The International Conference on Intelligent
Systems in Molecular Biology, 48:453–461, 1997.

[20] P. Stam. Construction of integrated genetic linkage
maps by means of a new computer package: Joinmap.
The Plant Journal, 3(5):739–744, 1993.

[21] M. Syslo, N. Deo, and J. Kowalik.Discreet Optimiza-
tion Algorithms and Pascal Programs. 1983.

[22] J.W. VanOoigen and R.E. Voorrips. Joinmap 3.0
software for the calculation of genetic linkage maps.
Technical report, Plant Research International, 2001.

[23] I.V. Yap, D. Schneider, J. Kleinberg, D. Matthews,
S. Cartinhour, and S.R. McCough. A graph-theoretic
approach to comparing and integrating genetic phys-
ical and sequence-based maps.Genetics, 165:2235–
2247, 2003.

9


