
Windows Hash Reinjection Using GSECDUMP and MSVCTL
By Deron Grzetich

Intro

The objective of this exercise is to prove that gsecdump and msvctl actually work as
prescribed. These tools can be used to reinject a captured password hash to gain access
to a system without ever needing to break the hash to reveal the password. Normally, a
captured password hash (via pwdump, fgdump, cain, etc.) would need to be broken (john
the ripper, rainbowtables, lcp, etc.) in order to be used for authentication to Microsoft
systems connected to the network. The method using gsecdump also reveals the
password hashes, which isn’t any different from fgdump. What is different about this
method is that this tool can pull the hash of the logged on user, not their cached and/or
salted password hash. It was possible before this attack to use a modified SMB client and
pass the password hash; however, the attacker’s options were limited to whatever the
SMB client emulator could provide. In most cases these clients were limited to MS file
and print sharing. The newer “pass-the-hash” tools allow the native MS SMB client to
use the stolen password hashes and gives the attacker a much wider range of options once
authenticated to a system.

The Test

Using information from the blog at
http://truesecurity.se/blogs/murray/archive/2007/03/16/why-an-exposed-lm-ntlm-hash-is-
comparable-to-a-clear-text-password.aspx, which was in response to a presentation given
at the 2007 Microsoft MVP conference…

I tried this out for myself in a test environment. Please note that I had to disable AV as
both McAfee and Symantec caught the tools as a “hack tool”. Regardless, here is what I
did:

I have a test setup of a Windows 2000 Server at 10.0.0.20, an Active Directory DC at
10.0.0.10, and a Windows XP attack system at 10.0.0.1.

1. I didn’t bother compromising the Windows 2000 server; this is a step that the
malware would have taken for you. If the local admin account is compromised,
or the user’s account if they run in the context of local admin, then this attack
works.

2. On the Windows 2000 Server I ran the gsecdump tool which dumps the hashes for
the logged on user…this includes the hashes for both the local accounts and the
domain accounts that are currently being used on the system. One very important
thing to note here is these “domain” hashes are the actual hashes, not the salted
cached password hashes.

3. To prove this is the case I ran pwdump6 against the domain controller. This
action dumps the SAM file from the active directory database. If the
TESTDC\Administrator account pulled from the gsecdump run and the
Administrator account from the pwdump run have the same hash then we have
proven the hash obtained from gsecdump is the actual hash and not a salted
cached password hash (which requires brute-force password cracking in order to
be useful).

4. Here is the pwdump output from the domain controller that shows the hashes for
the domain administrator account. Note it is the same as the gsecdump above
(hint: MS hashes are formatted as accountname:rid:lmhash:ntlmhash:::, the last 4
characters in the lmhash is B16F in both cases)

5. With knowledge of a domain admin user hash we can run the msvctl tool injecting
only the user hash that we obtained from gsecdump. Msvtcl is an application that
can run a “run-as” with the captured hash. In this case I asked it to run cmd.exe
so I could open a command prompt.

6. This step opens a command prompt window in the context of the
TESTDC\Administrator account. To test this we can run a net use command from
our new cmd window and see what happens if we mount the domain controller
C:\ drive as Z:\ from our attacking system.

7. From the output we can see that we connected to the domain controller’s C:\ drive
(I put a simple doc file called ifyoucansee… to prove to myself it was in fact the
domain controller’s c drive). I also echoed “hello” into a text file called test.txt
and ran dir again so you can see I can write to the drive.

As an alternative, Core Security also released a toolset with similar functionality
called PSHTOOLKIT. I tested this against a Windows 2000 Server with no luck;
however, it did work on Windows XP and 2003 Server. My guess is that MS
changed the way in which the PID for the LSA service (required for PSH to work) is
pulled and that PSH was written specifically for XP and 2003 systems. Here is a
screenshot of PSH in action on the domain controller. Or, the DLL injection
technique doesn’t quite work correctly on a Windows 2000 system.

Things To Note

1. These tools are starting to get caught by AV, but malware is also getting better at

turning AV off first…so we’ll have to see which one wins.
2. The use of gsecdump requires that you have local admin privileges on the box and

that someone with elevated domain admin privileges logs into the system while
you run gsecdump. Once the domain admin logs out the hash is removed…so this
is a real-time type attack.

3. Gsecdump differs from PSH, fgdump, pwdump, etc. in that it doesn’t use DLL
injection or the LSASS service to grab the password hashes. DLL injection or
service start-up usually trip AV and it kills the service and the dump never
completes.

4. An alternative method using Metasploit and Incognito currently exist. In place of
hash passing it uses token passing, which I’m not going to get into here.

As a side note, this came up as a student asked about an attacked that may have been
witnessed by his organization’s security group. The users all run as local admin, so it
is understandable that an end-user could have been compromised by malware
allowing a pass-the-hash attack to take place. One thing that was mentioned was the
attacker’s use of RDP to remotely connect into the compromised system. Yes, this
can be done through command line as well (the example below launches RDP from
command line of the compromised Win2k box):

But that begs they question of why. Most attackers who compromise a system do so
in order to add it to their botnet, steal passwords, credit card numbers, bank account
info., etc. Why use RDP which may be detected via network monitoring, visible to
the end user, etc.?

Summary

Gsecdump and msvtcl work in my test environment with the caveat that AV would
have detected their presence. Regardless, passing password hashes to authenticate to
systems with elevated privileges is much faster than brute forcing the salted cached
password we would normally be able to pull using fgdump, cachedump, or the like.

