
Design and Evaluation of Host Identity Protocol (HIP)
Simulation Framework for INET/OMNeT++

László Bokor Szabolcs Nováczki László Tamás Zeke Gábor Jeney

Budapest University of Technology and Economics, Department of Telecommunications
Magyar Tudósok krt.2., H-1117 Budapest, Hungary

Tel: (+ 36 1) 463-3261, Fax: (+ 36 1) 463-3263
{goodzi, nszabi, koci, jeneyg}@mcl.hu

ABSTRACT
Host Identity Protocol (HIP) decouples IP addresses from higher
layer Internet applications by proposing a new, cryptographic
namespace for host identities. HIP has great potential in means of
mobility and multihoming support, security, and performance,
such making it quite a promising candidate as the basic
architecture of the Future Internet. However, HIP is still in
development and very early standardization phase: the protocol is
continuously evolving due to its adaptivity to functional changes
and extensions. Aiming to completely understand the protocol's
behavior, its applicability to wide-scale usage and to analyze
current and future improvements and enhancements, it is crucial
to develop a proper, RFC-compliant, extensible simulation model
for Host Identity Protocol. In this paper we present the structural
design and the functional details of our HIP simulation framework
(called HIPSim++) integrated into the INET/OMNeT++ discrete
event simulation environment. In order to evaluate the accuracy
and preciseness of HIPSim++, we designed a real-life HIP testbed
and compared the simulation outcomes with the reference results
obtained from this HIP testing architecture. Our analysis show
excellent accuracy and consistent operation of the simulation
framework in terms of handover metrics (latency, packet loss,
throughput) and behavior when compared to the real-life
experiences of the HIP testbed.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

I.6.5 [Simulation and Modeling]: Model Development -
Modeling methodologies

I.6.6 [Simulation and Modeling]: Simulation Output Analysis

I.6.8 [Simulation and Modeling]: Types of Simulation –
Discrete event

General Terms
Measurement, Performance, Design, Experimentation, Security.

Keywords
Protocol Simulation, OMNeT++, INET, C++, Host Identity
Protocol (HIP), Simulation framework, Real-life HIP testbed,
Handover performance.

1. INTRODUCTION
In the current Internet architecture, nodes are identified by IP
addresses depending on the actual topological position of the
nodes. Therefore IP addresses are simultaneously describing both
the location in the network and the identity of a particular node.
The semantic overload of the IP addresses causes problems. The
most prominent among them is mobility management: when the
node changes its attachment point to the network (and thus its IP
address), active sessions (which are mostly connected to the
TCP/IP numbers) are interrupted. Obviously users want seamless
handovers with continuous connections and sessions, so engineers
must find an answer here.

The main problem is the duplicate role (or semantically
overloaded nature) of IP addresses: they both identify the user
itself and its location. From the data link layer, we see that the
main role of IP addresses is to support the routing of IP packets
(locator role), but from the transport layer's point of view the IP
addresses are mainly responsible for the identification of the
sessions (identifier role).

There are many existing solution to divide these two roles of the
IP addresses: they are mainly introduced in the context of IPv6
mobility management. Nevertheless, they all provide a solution to
separate the functionalities somehow. One of the existing
solutions is called Host Identity Protocol (HIP). HIP introduces a
new layer between the network layer (IP) and the transport layer.
The new HIP layer uses dedicated, cryptographic identifiers
(called Host Identity), which represents the identifier role in the
sessions: transport protocols rely on these HIs, not the IP
addresses. Thus, IP addresses remain only geographical locators;
they purely identify the location of the nodes and no longer take
care of the identification. With HIP, mobility and even
multihoming is not a problem any more: nodes can simply change
their IP addresses without loosing active connections.

However, HIP is also useful for some more advanced
functionalities. For instance, with portable HIs it is quite easy to
support application mobility: applications can be transformed
from one node to the other by passing the HIT identifier between
the nodes. The authors of this article believe that HIP can be
applied for a plenty of purposes and it can provide nice solutions
in different areas. This is the reason why the development of a
complete HIP simulator framework and the extensive validation
of the developed protocol are needed.

This paper is organized as follows. Section 2 summarizes the
principles of Host Identity Protocol. The most important
acronyms and concepts of HIP are introduced here. Section 3 is
about the HIP simulation framework (HIPSim++) we have
developed. It is based on OMNeT++, and the INET framework of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSWiM’09, October 26–29, 2009, Tenerife, Canary Islands, Spain.
Copyright 2009 ACM 978-1-60558-616-8/09/10...$10.00.

124

OMNeT++ has been used as a basis of development platform. All
interesting details of our simulation model are given in this
section. In Section 4, the real-life HIP testbed is described,
together with the HIP implementation (InfraHIP) we used for
validating our model and implementation. Section 5 discusses and
evaluates the results obtained from simulations and real-life
measurements. The comparison shows that the simulator we have
developed seems to properly model the HIP protocol. Finally,
Section 6 concludes the document, and flashes some possible
future works.

2. OVERVIEW OF HOST IDENTITY
PROTOCOL
In this section we shortly summarize the HIP concept and
functions, which were implemented in HIPSim++ so far. Note
that our goal here is to give an overview of HIP’s features rather
than to present a detailed description, which is out of scope of this
paper and can be found in [1][2][3][4][5][6][7].
As mentioned in the introduction, HIP aims to separate the
different roles of IP addresses. While IP continues to act as pure
locator, HIP introduces a new, globally unique namespace (the
Host Identity namespace), which is a pool of identity
representations called Host Identifiers (HIs). These namespace
elements are of cryptographic names used to identify nodes.
Every HIP node has at least one HI and implements the functions
required to handle the new namespace. The scope of the protocol
includes the modifications and new methods that integrate the
concepts of HIP into the existing Internet architecture. These
functions form a new protocol layer, which resides between the
transport and network layer. HIP separates application and
transport layer connections from IP addresses thus enabling
effective application of communication security techniques and
mobility management [1].

Figure 1. The HIP Base Exchange

HIs could be of any globally unique namespace but during the
protocol design they were decided to be cryptographic names,
namely asymmetric key pairs. This enables the integration of
strong security features such as authentication, confidentiality,
integrity and protection against certain kind of Denial-of-Service
(DoS) and Man-in-the-Middle (MitM) attacks and some other
security threats. However, HIs are rarely used in HIP protocol
packets. Instead a 128 bit long representation called the Host
Identity Tag (HIT) is applied in HIP control messages. The HIT is
created by taking a one-way hash on the HI. For local means and

to enable IPv4 compatibility it is necessary to also have 32 bit
representations of His; these are the Local Scope Identifiers. HIP
related information is passed by HIP headers, which have a form
of a standard IPv6 extension header.

Figure 2. The HIP state machine

A HIP association can be established between two nodes (i.e. an
Initiator and a Responder) by a four way end-to-end security
handshake, the Base Exchange (BE) (see Figure 1). The BE
authenticates the peers by asymmetric keys and implements a
Diffie-Hellman key exchange to create symmetric keys for later
payload encryption. Moreover, a special puzzle-solution
mechanism is applied to protect the responder against certain DoS
attacks. As a result of a successful HIP Base Exchange an IPSec
Security Association pair is created between the peers. After the
BE payload data is passed between the peers using the
Encapsulating Security Payload (ESP). Note that HIP related info
(i.e. the HIP header) is only applied to HIP control packets but not
in case of data transfer messages.
The inside protocol behavior is based on the protocol’s state
machine [2], which controls a HIP association during its lifetime.
Figure 2 summarizes the HIP state machine. The picture shows
the states and the state transitions a HIP association can suffer as
long as it exists. We also indicated the correspondent trigger that
starts an actual transition.
Using HIP mechanisms, the application data is transferred
between the nodes through a special IPSec ESP tunnel. A new
transport mode of ESP was designed especially for HIP [3]. This
so called Bound-End-to-End-Tunnel (BEET) mode integrates the
ESP tunnel mode with the low overhead transport mode. Using
BEET mode the outer IP header of the ESP packet holds the IP
addresses of the peers but the inner header is missing. Instead the
Security Parameter Index (SPI) is used to identify the
correspondent HIP association by reception at the destination.
A HIP association can be refreshed applying the UPDATE
mechanism of the protocol (Figure 3) [6]. The mobile simply
sends an UPDATE HIP control packet to all of its peers with a
special parameter, the LOCATOR that holds the new IP
address(es). Before updating its association, the peer verifies the
new address by sending an UPDATE packet to the mobile node,

125

which requests it to echo back some nonce information. An
address becomes verified if this nonce was echoed back from that
address. A HIP node can communicate with unverified addresses
too but only for a limited time. This is controlled by the Credit-
Based Authorization (CBA) mechanism. This protects the updated
peer against redirection-based flooding attacks when using
unverified addresses. A counter is maintained for every HIP
association. The counter is increased by every incoming packet
with the size of the packet. The counter is decreased by every
outgoing packet with the size of the packet if an unverified
address is used. The next packet can be sent out only if the
counter is greater than the size of the packet. Otherwise it must be
dropped or buffered until sufficient amount of credit is gathered
again. The counter is periodically decreased with a constant rate
even if there are no outgoing packets. This is called Credit Aging
and helps to prevent nodes against attackers who may collect
large amount of credit during a long time to spend them very fast
possibly performing some kind of DoS attack.

Figure 3. The UPDATE mechanism

The initial reachability of mobile nodes is not solved by the basic
readressing functionality of HIP. Thus the basic protocol was
extended by a new registration mechanism [5] and the HIP
rendezvous service [7]. Special HIP nodes, called Renezvous
Servers (RVSs), offer their features for mobile nodes to store their
actual HIT-IP mappings and to make them available to potential
communication partners. Mobile nodes register and update their
IP address at RVSs with the registration mechanism and store the
IP address of the RVS in DNS system [4]. If a peer wants to
establish a HIP association with the mobile, it learns the actual
RVS IP address with a DNS query and sends the first packet of
the BE to the RVS. The server relays the packet to the actual IP
address of the mobile node. The rest of the connection build up
goes like usual. Figure 4 shows the registration and the RVS
mechanisms.

Figure 4. The registration and RVS extension

3. INTRODUCTION TO THE HIPSim++
FRAMEWORK
3.1 Fundamentals of INET/OMNeT++
In this section the basics of INET/OMNeT++ are introduced in
order to give an overview about the fundamentals of the
simulation environment we used to develop our Host Identity
Protocol simulation framework.
OMNeT++ is a discrete event simulation environment for
modeling communication networks, IT systems, queueing
networks, hardware architectures, multiprocessors, distributed or
parallel processes and other systems [8][9]. OMNeT++ aspires to
be the optimal solution between open-source, research-oriented
simulators (like NS-2 [10]) and the high-priced commercial
softwares (like OPNET [11]). Therefore OMNeT++ is public-
source, and under the Academic Public License it is free to use for
non-profit aims.
OMNeT++ is component-based and has a modular structure: a
simulation model consists of modules communicating with
message passing (see Figure 5.). The active modules are named as
simple modules (they are atomic elements written in C++, using
the OMNeT++ simulation class library), while the modules
composed from simple modules are termed compound modules
(where the number of levels in the module hierarchy is not
limited).
Modules communicate with messages thus message sending and
receiving are the most frequent tasks in simple modules.
Messages contain common attributes (like timestamps) and also
arbitrary ones (i.e. any other kind of user data). Simple modules
typically use gates (input and output interfaces of modules which
can be linked with connections) for sending messages, but direct
send to destination modules (using an invocation from the
OMNeT++ simulation kernel) is possible as well. OMNeT++
messages can be easily defined by specifying the fields and other
possible message content in .msg files and by letting OMNeT++
to take care of creating the necessary C++ classes from the .msg
definitions.

Figure 5. Hierarchy of modules in OMNeT++

A special topology description language called NED (NEtwork
Description) is applicable for users to define the structure of
simulation models (the modules and their interconnection) in
OMNeT++. A typical .ned description file consists of simple
module declarations (i.e. description of the module’s interfaces),
compound module definitions (i.e. declaration of the module's
external interfaces and definition of submodules and their
interconnection) and network definitions (i.e. compound modules
that are self-containing simulation models). In this way model
behavior and model topology are separated: behavior is defined in
C++ code, while topology is determined by the NED language.
Simulation parameters (i.e. initial parameters of simulation runs
which are independent both from the C++ and the NED codes) are

126

specified in .ini files. Separating initial inputs in this way
enable users to run simulations for each one of the interested
parameter combination without modifying the existing codes.
Since the first release of OMNeT++, several simulation models
have been developed by various research teams and individual
contributors for different areas like wireless and mobile networks,
ad-hoc and sensor networks, IPv4 and IPv6 networks, wireless
access technologies, optical networks, MPLS, file systems, P2P
architectures, etc. In the area of communication networks
currently the most powerful and most widespread simulation
model framework for OMNeT++ is the INET Framework which
grew from the IPSuite originally developed at the University of
Karlsruhe [12].
INET Framework contains detailed and accurate models for IPv4,
IPv6, TCP, UDP, MPLS, RSVP, LDP protocols and several
applications like telnet, video streaming, etc. The framework also
includes link-layer models as PPP, Ethernet and 802.11b/g (both
ad-hoc and infrastructure modes). Static routing can be set up
using network autoconfiguration, but dynamic routing provided
by routing protocol implementations (OSPF, RIP) also can be
used. INET supports wireless and mobile simulations as well:
models for wireless communication and mobility have been
integrated from the Mobility Framework [13]. As the INET
Framework builds upon OMNeT++, it uses the same concept:
models consist of modules communicating by message passing.
Protocols are usually represented by simple modules in which
external interfaces (gates/connectors and parameters) are
described in a .ned file, and the implementation is prepared as a
C++ class with the same name (e.g. IPv6, ICMPv6 modules). The
NED language makes possible the integration and free
combination of such modules in order to create more complex
entities as hosts, other network devices and whole network
topologies without writing new C++ code or recompile the
simulation. Wide scale of pre-assembled hosts, different routers,
switches, access points, and other models can be found in the
/Nodes directory of INET (e.g. StandardHost6, Router6,
WirelessAP, etc.), but it is also possible to assemble new ones
from the existing modules, and even to implement your own
modules and to use them as supplemental building blocks of new
simulation models. Network interfaces (Ethernet, 802.11b/g, etc.)
are usually compound modules, and are constructed of a queue, a
MAC, and potentially other simple modules. IPv4 and IPv6
network layers are also examples for compound modules in the
INET Framework.
Modules of INET provide different functions. There are modules
which implement protocols (e.g. IPv4, IPv6), perform
autoconfiguration of whole network topologies (e.g.
FlatNetworkConfigurator6), store and manipulate data (e.g.
InterfaceTable, RoutingTable6), manage communication between
modules in a publish-subscribe manner (e.g. NotificationBoard),
monitor radio channels in wireless simulations (e.g.
ChannelControl) and implement mobility of hosts (e.g.
RandomWPMobility), just to list only the most important ones.
In the INET Framework protocol headers and packet formats are
presented in message definition (.msg) files, which are
automatically translated into subclasses of the OMNeT++'s
generic cMessage class.
Several authors have contributed with various extensions to the
INET Framework. OverSim [14] is designed to model overlay

networks and P2P protocols in the INET Framework. AODV-UU,
DSR-UU and OLSR protocols are also available as additions for
INET [15]. xMIPv6 (Extensible Mobile IPv6) is a simulation
model for the INET Framework (named together as
INETwithMIPv6) that has been implemented with strict
conformance to the IETF specifications of Mobile IPv6 and its
protocol family (HMIPv6, FMIPv6, NEMO BS, PMIPv6 etc.)
[16] [17].
Our contribution, HIPSim++, is also an extension on the top of
INET being developed as part of our ongoing researches in the
areas of HIP-based micro-mobility, network mobility and per-
application mobility. We hope that HIPSim++ will provide a
flexible toolset for validation of HIP protocol extensions and also
will make significant impact as the reference HIP simulation
model in the INET/OMNeT++ world.

3.2 HIPSim++ basics
In order to provide an extensible and precise simulation model for
the Host Identity Protocol, we developed our HIPSim++
framework on the top of the 20081128 version of
INETwithMIPv6 [16] [17]. Considering that the 32bit LSIs are
designed for local communication only (i.e. the benefits of the
HIP scheme can’t be exploited totally on IPv4), our HIP
framework uses the IPv6 networking stack of INET such fulfilling
the requirements of global HIP communication based on the
128bit HITs. Transparency of the novel HIP layer is another
important requirement which should be guaranteed for practical
reasons, but current HIP RFCs define only a few guidelines to
support the transparent behavior of HIP in the current networking
architecture. These guidelines were also followed during our
development work.
Despite the fact that HIP relies on the functions of IPSec, a full
implementation of IPSec and relating algorithms is not part of our
simulation model: HIPSim++ does not possess properly realized
Diffie–Hellman mechanisms, RSA engine, cryptographic hash
functions and puzzles because precise mapping of all the security
algorithms is out of scope of our current efforts. The main design
goal of HIPSim++ was to accurately simulate core HIP
instruments focusing on the advanced mobility and multihoming
capabilities and wireless behaviour of the protocol and providing
only skeleton implementation of the above mentioned
mathematical apparatus.
The simplest scenario of introducing HIP into the ISO-OSI
architecture is when applications continue to use IP addresses,
and HITs (or LSIs) only appear in the newly introduced HIP
layer. Besides the integration of the Host Identity Layer, no other
modifications are to be applied in the current protocol stack if
such a scenario is implemented. However this is an easy way to
introduce basic HIP functions, it also restricts HIP’s general
benefits of mobility and multihoming support. Therefore our
implemented HIP layer registers HIT-IP bonds for every
communication session, and when packets from the transport
layer arrive, destination and source HITs are replaced by
destination and source IP addresses. Higher layers know only
about HITs and Port numbers: they are using HITs instead of IP
addresses. By realizing this scenario, all the advantages and
benefits of applying HIP can be exploited and also HIPSim++ can
be easily used in the existing INET-based simulation models.
Current version of HIPSim++ can be downloaded from our
website [18].

127

3.3 Main Modules of HIPSim++
3.3.1 HIP module
3.3.1.1 Description and tasks of the module
The core of our HIPSim++ implementation is the HIP layer
module named as HIP module which creates a daemon instance
called HIPSM for every new HIP session. This daemon is
responsible for all mechanisms of the HIP State Machine (HIP
SM) described in [2], e.g. for handling HIP Base Exchange and
HIP mobility functions. One such daemon instance cares of one
SA, which will be identified by the local SPI. HIP SM daemons
are registered by destination and source HITs (and SPIs) in the
HIP module. HITs have to be provided by the applications (or
rather the transport layer), therefore HIP-capable DNS extensions
[4] are also integrated into HIPSim++. The HIP module is also
responsible for managing changes occurring in the states and
addresses of host interfaces.

3.3.1.2 Main methods of the module
- handleMessage: Leads the incoming packets towards the

appropriate methods (packets can be arrived from the transport
and the network layers).

- handleMsgFromTransport: Checks whether there is an existing
HIP SM for the packet’s destination HIT (hitToIpMap structure)
and forwards the packet towards the appropriate HIP SM.

- handleMsgFromNetwork: If the arrived packet is a HIP I1 (see
Figure 1), then creates a new SM. If another HIP signaling
packet has arrived, then searches for the appropriate SM and
forwards the packet to it. If a HIP data message comes in, then
the method gets the packet out from the ESP and forwards it to
the appropriate SM based on the SPI value.

- handleAddressChange: This method is applied by the HIP
module in order to gather information about lower layer events
(like IP address changes) using the capabilities of the INET’s
NotificationBoard object. After processing such lower layer
information, HIP UPDATE mechanisms can be initiated at the
relevant SMs.

3.3.1.3 Main structures, variables of the module
- std::map<IPv6Address,HitToIpMapEntry *>hitToIpMap: This

structure assigns SM identifiers and host locators belonging to
HIP connections to destination HITs.

- std::map<InterfaceEntry *, IPv6Address>mapIfaceToIP: This
structure stores all the interface information (including IP
addresses). The data stored in this structure is continuously
updated by the HIP module.

3.3.2 HIPSM module
3.3.2.1 Description and tasks of the module
The HIPSM module implements the main functions of the HIP
State Machine. In our model transitions of HIP State Machine
assume that packets are successfully authenticated and processed.
This behavior is in consistence with the standards, therefore our
skeleton implementation of security algorithms do not hamper our
model to accurately simulate HIP mechanisms. One instance of
HIPSM represents and manages one HIP connection with one
Security Association. HIPSM handles transitions occurring during
HIP Base Exchange, RVS registration, UPDATE mechanism, etc.
and generates HIP messages according to the state transitions.
HIPSM module also handles changes in partner IP addresses (sets

the locators by receiving and processing UPDATE messages), but
the actual storage happens in the main HIP module's hitToIpMap
structure.

3.3.2.2 Main methods of the module
- handleAddressChange: If an ADDRESS_CHANGED message

is received from the HIP module, HIPSM starts the UPDATE
procedure in which an UPDATE message containing the current
local locators will be sent towards the partners.

- handleMessageLocalIn: Handles packets received from the
upper layers. If no HIP connection has been set up for a
destination HIT of an incoming packet, then the method starts
the HIP BE and stores this first message (triggermsg). If a
packet arrives for a ”BE in progress” HIP connection, then this
packet will be discarded. After a successful BE every
corresponding packet will be extended with an ESP header
containing the appropriate SPI value.

- handleMessageRemoteIn: Deals with packets coming from the
network. If a corresponding BE or UPDATE procedure is in
progress, then this method will generate the appropriate answer
messages. If no BE or UPDATE procedures are running for that
particular packet, then the ESP packet will be decapsulated and
the result will be passed to the HIP module for further
processing.

- handleCreditAging: Implements the basic procedures of the
HIP’s Credit-Based Authorization (CBA) approach designed to
prevent redirection-based flooding attacks. The method is called
after receiving creditMsg periodical self messages and uses
CBA CreditAgingFactor and CreditAgingInterval parameter
values proposed in [6].

3.3.2.3 Main structures, variables of the module
- int currentState: Variable for maintaining the current state of a

HIP State Machine. Possible HIP SM states are stored in an
enumerator called States.

- cMessage* triggerMsg: The message initiating a HIP BE is
stored in this object till the BE finishes.

- cMessage* creditMsg: Periodical self message for CBA
mechanisms.

- std::list<IPv6Address> * srcAddressList; int currentIfId:
Variables for storing source interfaces and IP addresses. The
start of an UPDATE procedure updates these variables.

3.3.3 RvsHIP module
3.3.3.1 Description and tasks of the module
The RvsHIP module is derived from the HIP module in order to
extend the basic HIP capabilities with the RVS functions by
handling the incoming registration messages according to [5] and
by forwarding I1 messages [7] to the appropriate HIP responder
chosen from the registered ones.

3.3.3.2 Main methods of the module
- handleMsgFromNetwork: If the destination HIT of an arrived

HIP I1 packet is the RVS's own HIT, then registration
mechanisms are to be initiated and a new HIP SM is to be
created. HIP SM daemons in the RVS are responsible for
handling HIP UPDATE messages and corresponding
procedures for registered HIP nodes. If the destination HIT of
an incoming I1 differs from the RVS's own HIT, then it must be

128

modified and forwarded towards the appropriate HIP node in
the registration list according to [7].

- alterHipPacketAndSend: This method modifies the assigned I1
packet: a FROM parameter containing the original source IP
address of the HIP packet will be added and the source IP
address in the original IP header will be overwritten with the IP
of the registered HIP node owning the destination HIT.

- handleAddressChange: There is no need to gather information
about lower layer events in the RVS, thus this method is
overloaded with an empty function.

3.3.3.3 Main structures, variables of the module
RvsHIP module does not possess structures or variables differing
from the ones already introduced in the HIP module.

3.3.4 DnsBase module
3.3.4.1 Description and tasks of the module
The DnsBase module is a simple UDP application which realizes
basic DNS server functionality for name resolution of HIP hosts
and implements the new Resource Record (DNS HIP RR) defined
in [4]. The module resolves domain names to HITs and IP
addresses and in case of mobile HIP hosts also provides RVS
information. Note, that reverse DNS lookups are not supported in
the current version of HIPSim++.

3.3.4.2 Main methods of the module
- LoadDataFromXML: Reads initial DNS database containing

Resource Records of every host in the simulation from an .xml
configuration file. Resource Records of a particular HIP host
are within the <DNSEntry> tag where <Address>, <HIT>,
<NAME>, <RVS>, etc. tags contain the different fields of a DNS
HIP RR.

- handleMessage: Processes incoming DNS query messages and
answers them by sending DNS responses with the appropriate
Resource Records of the queried hosts.

3.3.4.3 Main structures, variables of the module
- std::vector<DNSData *> DNSVector: Vector for storing all

entries of the whole DNS database after processing .xml
configuration file.

- struct DNSData: Structure for storing entries of one host.
Contains IP address, HIT, domain name, and the HIT/IP of the
host’s RVS (if it has any).

3.4 Special Nodes in HIPSim++
HIP RFCs and Internet Drafts define three main types of nodes,
namely the Initiator, the Responder and the Rendezvous Server.
For introducing name resolution functions, also DNS server entity
is to be used in a HIP architecture. All the above HIP nodes have
been realized in HIPSim++ based on the existing INET modules
(the .ned definitions are located in the /Nodes/IPv6 directory
of INET) and the newly introduced HIP, HIPSM, RvsHIP, and
DNSBase modules.

3.4.1 Wired HIP Initiator/Responder (HipHosts6)
Wired hosts implementing HIP Initiator and/or Responder
functions (i.e. HIP hosts) are derived from the INET’s existing
StandardHost6 compound module by inserting the HIP module
between the transport and the network layers. This node
represents a basic HIP host with HIP mechanisms, HIP-based

UDP/TCP applications but without support of mobility (Figure 6).
The physical network interface is one Ethernet card, but in
general any kind of network interface model can be used. HIP
hosts contain a single instance of the HIP layer compound module
which executes HIP procedures and creates HIP SM daemon
instances for every HIP connection.

Figure 6. Wired HIP Initiator/Responder (HipHosts6)

3.4.2 Wireless HIP Initiator/Responder
(WirelessHipHosts6)
It is also possible to integrate WLAN for the physical interface of
a HIP host. In this case we are talking about WirelessHipHost6
nodes which also comprise Mobility Agent in order to realize
mobile operation (Figure 7).

Figure 7. Wireless HIP Initiator/Responder

(WirelessHipHosts6)

3.4.3 Wireless HIP Initiator/Responder with multiple
interfaces (WirelessMultihomeHipHosts6)
In order to exploit the multihoming capabilities of Host Identity
Protocol, the number of physical interfaces of a HIP host can be
increased freely in HIPSim++. WirelessMultihomeHipHost6 are
implementing HIP hosts with multihoming capabilities, where
communication partners are continuously updated about the
locator (i.e. IPv6 address) changes of all the active interfaces, and

129

the most appropriate interface is used for data transmission
(Figure 8).

Figure 8. Wireless HIP Initiator/Responder with multiple

interfaces (WirelessMultihomeHipHosts6)

3.4.4 DNS Server (StandardHost6 with DNS server
application)
A DNS Server node in HIPSim++ is responsible to provide name
resolution for HIP hosts by implementing the basic functions
described in [4]. DNS Server node is basically a StandardHost6
compound INET module comprising also our DNS
implementation called DnsBase which runs appropriate DNS
mechanisms. At least one DNS Server node is needed for every
simulation scenario built in HIPSim++ framework, because (both
wired and wireless) HIP hosts are using DNS queries in order to
get their partners’ initial locators (i.e. directly Responder or
indirectly RVS IPv6 addresses). The DNS database used by our
DnsBase module is an .xml file containing resource records of
every node in the simulation topology. DNS queries are handled
by the Host Identity Layer: the first transport packet initiates the
query process based on the destination HIT (and the pre-set DNS
IP address), and the Basic Exchange starts right after the response
provides with the locator belonging to that destination HIT.

3.4.5 HIP Rendezvous Server (RvsHost6)
RvsHost6 nodes implementing HIP rendezvous functions in our
simulation framework are also derived from the StandardHost6
compound module by interposing the modified HIP module
prepared to handle RVS tasks (i.e. the RvsHIP module). RvsHost6
node forwards I1 messages originated by (wired or wireless) HIP
Initiators to the appropriate (wired or wireless) HIP Responder
signed in the RVS. Therefore potential Responders must register
themselves in the RVS and in place of their own IP address,
Responders must use their RVS’s IP address in the Domain Name
System. Wireless HIP nodes must continuously inform their
RVSs about events of locator changes.

3.5 HIPSim++ Messages
In this section we introduce the most important message
constructions of our HIPSim++ HIP simulation framework.

3.5.1 HIP signaling messages
In accordance to [2], different HIP messages start with a fixed
header. The HIP header is logically an IPv6 extension header such

in HIPSim++ all HIP messages are implemented as additions to
the INET’s Ipv6ExtensionHeader. Almost all the already
standardized HIP message types and parameters are defined in our
framework, including also the Locator parameter which is
realized as an array of HIPLocator structures. An important
exception is the ESP_INFO parameter which is missing due to the
simplified management of IPSec SPIs in our simulation model.

3.5.2 HIP data messages
In HIPSim++ we currently use the Encapsulated Security Payload
(ESP) based mechanism for transmission of user data packets [3].
As proper implementation of all the cryptographic mechanisms in
HIP is outside of the scope of our researches, we use only
simplified Encapsulating Security Payload Header [19]
mechanisms for distinguish HIP data packets based on SPIs.
Every HIP data message travels in ESP: packets coming from the
transport layer will be encapsulated in an ESPHeaderMessage
labeled with the appropriate SPI value. Every
ESPHeaderMessage has a special object (called
IPv6EncapsulatingSecurityPayloadHeader) per header to carry
the SPI value as parameter. This object is derived from the
IPv6ExtensionHeader class of INET in order to overcome some
inflexibility issues of the existing IPv6 implementation and
making the ESP packets to pass through the networking layer
towards the HIP module.

3.5.3 DNS messages
The basic HIP namespace resolution functions are implemented
using a simple query/response message pair called DnsQuery and
DnsResponse.

3.6 Modifications to INETwithMIPv6
In order to implement HIP protocol mechanisms realized by the
above introduced HIPSim++ model and to integrate HIPSim++
with the INET framework (INETwithMIPv6 version 20081128),
several extensions and modifications have had to be introduced in
the existing modules/classes of INET. However these
modifications are not transparent to the current INET building
blocks, it has to be emphasized that the revision we made is
basically a set of additional supplements and extensions without
breaking or changing the original functionality. In this chapter we
are not intended to present all the details of the corresponding
modifications but to give a list with a short overview about the
changes and their nature.

- /Network/IPv6/IPv6ExtensionHeaders.msg: insertion of HIP
header and parameter structure; ESP header extended with SPI.

- /Network/IPv6/IPv6Datagram.cc: integration of mechanisms for
HIP header management.

- /Transport/UDP/UDP.cc: correction of a bug preventing proper
UDP communication over IPv6/HIP.

- /Network/IPv6/IPv6.cc: correction of a bug causing memory
leaks during packet transmission towards upper layers.

- /Network/ICMPv6/IPv6NeighbourDiscovery.cc: introduction a
new NotificationBoard message designed to inform the HIP
layer about address changes after finishing Duplicate Address
Detection procedures of IPv6.

- /NetworkInterfaces/Ieee80211/Mac/Ieee80211Mac.cc/h:
introduction of a simple Radio module identifier for
NotificationBoard messages.

130

- /NetworkInterfaces/Ieee80211/Mgmt/Ieee80211MgmtSTA.cc/h:
extension of NotificationBoard messages with a new object for
proper identification.

- /NetworkInterfaces/Ieee80211/Mgmt/Ieee80211AgentSTA.cc/h:
extension of NotificationBoard messages with a new object for
proper identification; introduction of a new function for
updating InterfaceTable information; introduction of new
NotificationBoard messages for distinguishing new and old
WLAN Access Points.

- /NetworkInterfaces/Radio/AbstractRadio.cc/h: introduction of a
new function for Radio module identification and ID setup.

- /World/ChannelControl.cc: extension with support of multiple
radio channels.

- /World/ChannelAccess.cc: extension with support of multiple
radio channels.

- /Network/IPv6/Contact/InterfaceEntry.cc/h: extension with a
toolset for managing connection states.

4. HIP TESTBED
In order to validate HIPSim++ in real-life scenarios and certainly
to analyze Host Identity Protocol behavior in real-life mobile and
multihomed environments, we designed and configured a HIP
testbed architecture based on the most widespread HIP software
implementation called InfraHIP [20].
In this testbed the HIP hardware infrastructure consists of one HIP
rendezvous server, several HIP initiators and responders, a
WLAN 802.11b/g access network, and native IPv6 gateway
towards public HIP test servers connected to the European multi-
gigabit research computer network called GÉANT [21]. The
WLAN connectivity comprises IEEE 802.11b/g compatible
Linksys WRT54GL Access Routers. This exclusive, local
wireless access enables wireless HIP initiators and responders to
maintain HIP connections with data rates up to 28Mbit/sec and
RTTs around 10ms. For accessing the WLAN access architecture,
wireless HIP nodes – based on Fujitsu-Siemens Lifebook C1110D
laptops – have been equipped with 3Com 3CRPAG175 PCCARD
WLAN interfaces featuring AtherosR chipset. The HIP
rendezvous server and wired HIP initiators and responders are
standard PCs with 4GHz Pentium 4 processors and 2 GB RAM
modules.
As it was already pointed out, the software architecture of our
HIP testbed is based on InfraHIP [20] which is currently
considered to be the most complete and standard compliant HIP
implementation. The project developing InfraHIP focuses on test
deployment of Host Identity Protocol infrastructure in order to
discover all the effects of HIP’s locator/identifier splitting
approach in practice, thus InfraHIP supports very wide-scale
features including RVS, DNS and even DHT, HI3, and
NAT/firewall traversal mechanisms. InfraHIP is a Linux-based,
hybrid userspace/kernel implementation of the latest HIP IETF
RFCs. All HIP network elements in the testbed run InfraHIP
components on Ubuntu 8.10 ”Intrepid” operating system with
Linux kernel 2.6.27.
The integrated hardware-software architecture of our HIP testbed
is shown in Figure 9.

Figure 9. HIP testbed architecture

During the measurements, handovers in the testbed were initiated
manually by shell scripts controlling the WLAN connection
between Access Points and the wireless HIP node. Tshark [22]
was used to capture relevant traffic and shell scripts were used to
process log files and collect measurement results to be compared
with HIPSim++ simulations.

5. EVALUATION
This section presents the results of our evaluation process based
on the following scenario. The mobile HIP host (both the real and
the simulated one) changes its network point of attachment by
connecting to another WLAN access point. As the APs are in
different IP networks advertising different IPv6 prefixes, the IP
address of the mobile must be changed. HIP handles the situation
by running the UPDATE process described above. In the real
world measurements we used a network traffic generator
application called Iperf [23] to exchange user data between the
endpoints, while built-in INET applications were used in
HIPSim++ for the same reason.

Figure 10. Network topology for HIPSim++ evaluation

The network topology built for HIPSim++ evaluation (Fig. 10)
can be considered as an exact copy of our real-life HIP testbed
architecture (Figure 9). There are only two differences. The first
is the lack of DNS server in the testbed (here the /etc/hosts
file is used for name-HIT-IP resolution) but it has no relevance in

131

the comparison: DNS procedures are initiated only before
connection establishment (i.e. Base Exchange). The second one is
that the testbed comprises IPv6 connection to the GÉANT
network while the simulation topology lacks of such feature. This
difference is also irrelevant, because GÉANT connection was not
used during the evaluation.

Three main scenarios were analyzed during our evaluation. First
we measured the handover latency experienced when using HIP.
The latency was defined here as the time elapsed between loosing
the connection at the old AP and the mobile sending out the third
UPDATE packet while connected to the new AP (see Figure 3.).
This latency consists of two main parts. First the node has to
configure its new IPv6 address by means of stateless auto-
configuration using RAs sent by the routers. Second the HIP
implementation has to handle the IP address change. This
definition of handover latency does not require the nodes’ clocks
to be synchronized, which makes time measurement much easier.
On the other hand the definition is accurate as the HIP association
is ready to send data at the point of time as the third UPDATE
packet is processed. We made eleven series of measures to
produce a more detailed picture on handover latency behavior.
The series were differing in the Router Advertisement (RA)
interval configured in the access routers. Both real-life and
simulated networks were set up to trigger 100 handovers in every
series. Nodes were configured to use IPv6 stateless auto-
configuration mechanism to obtain new IP address on their
interfaces. In such an environment the RA interval is the most
relevant network parameter that influences the handover latency.
We started the series with min/max RA interval of 0.03/0.07s and
finished with min/max RA interval of 1/3s. We applied equal
interval increment steps between the two margins. Figure 11
shows the results. RA intervals are represented as the average of
their minimum and maximum values applied in the given series.
Handover latency is expressed as the average of the 100 handover
series. Statistical accuracy is represented by a 95% confidence
interval indicated around each point. Results can be considered
very close to each other. The maximum difference (i.e. around 0.3
sec) can be observed at the 1.81s average RA interval point.

We also measured how many UDP packets are lost during a
handover in a HIP system. To get a detailed picture we repeated
the experiment by different data rates offered by the HIP
responder. A point on the plot represents the average UDP packet
loss of 100 handovers. A 95% confidence interval gives a view on
the statistical properties of the results. Looking at Figure 12 we
can conclude that the simulated and real world measurements are
very close to each other.

As our third evaluation scenario we originated TCP traffic
between the HIP initiator and responder nodes and measured the
throughput experienced at different handover frequencies. Figure
13 shows the results. Every point represents the average
throughput of a one hour long period applying the same value for
the number of handovers per every minute of that hour. Between
the series we increased the number of handovers suffered per
minute form 0 to 10. Results are expressed as a percentage of the
throughput of the no-handover scenario, which is the first result
on the left (i.e. 100%). We can say that the behavior is quite
similar. However the increasing number of handovers has
stronger effects on the simulated environment as those results are
usually under the real world numbers and its gradient is higher as

well. This observation is true until there are more than seven
handovers per minute. Reaching this limit we can see a drastic
drop down of the throughput in both cases. This is caused by the
fact that the TCP connection has not enough time to recover. In
this case when TCP send some data and does not get any answer
it calculates a certain amount of time during which it won’t send
any additional data. This time calculation is based on exponential
back-off and can cause large gaps in communication if frequent
handovers causes TCP to believe congestion occurrence in the
network.

Figure 11. Handover latency vs. RA interval

Figure 12. UDP packetloss vs. offered datarate

Figure 13. TCP throughput vs. handover frequency

6. CONCLUSION AND FUTURE WORK
In this paper we presented the main design choices and the
implementation details of HIPSim++ which is a Host Identity
Protocol simulation model integrated into the INET/OMNeT++
simulation environment. In order to assess our model and to
evaluate the accuracy and preciseness of the implementation, we
built and configured a real-life HIP testing environment based on
InfraHIP, and compared the outcomes of our simulation with the
reference results obtained from the testbed. Our analysis show

132

apparent accuracy and consistent operation of HIPSim++ in terms
of handover metrics (latency, packet loss, throughput) and
behavior when compared to the experiences gathered in the real-
life HIP testbed. This accuracy has been provided by modeling
HIP messages, nodes and mechanisms based on the actual
recommendations of current IETF RFCs, and by re-using the
existing detailed IPv6, mobility, channel, etc. models of the INET
Framework. We hope that the proved accuracy and degree of
reliability of HIPSim++ will make the model ideal for ongoing
and future HIP research works.
As a part of our future activities we will further extend HIPSim++
with HIP signaling delegation and service discovery mechanisms,
examine HIP multihoming issues, and prepare the model with
advanced HIP-based mobility protocols such as micro-mobility,
network mobility and per-application mobility.

7. ACKNOWLEDGMENTS
This work is supported by the OPTIMIX project which is partly
funded by the 7th Framework Programme (FP7) of the European
Union’s Information and Communication Technologies (ICT).
The authors would like to thank all participants and contributors
who take part in the studies, especially for Levente Mihályi who
played essential role in the initial phase of this research.

8. REFERENCES
[1] R. Moskowitz, P. Nikander: “Identity Protocol (HIP)

Architecture”, IETF RFC 4423, May 2006.
[2] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson: ”Host

Identity Protocol”, IETF RFC 5201
(http://www.ietf.org/rfc/rfc5201.txt), April 2008.

[3] P. Jokela, R. Moskowitz, P. Nikander: ”Using the
Encapsulating Security Payload (ESP) Transport Format
with the Host Identity Protocol (HIP)”, IETF RFC 5202
(http://www.ietf.org/rfc/rfc5202.txt), April 2008.

[4] P. Nikander, J. Laganier: “Host Identity Protocol (HIP)
Domain Name System (DNS) Extension”, IETF RFC 5205
(http://www.ietf.org/rfc/rfc5205.txt), April 2008.

[5] J. Laganier, T. Koponen, L. Eggert: ”Host Identity Protocol
(HIP) Registration Extension”, IETF RFC 5203
(http://www.ietf.org/rfc/rfc5203.txt), April 2008.

[6] P. Nikander, T. Henderson, C. Vogt, J. Arkko: ”End-Host
Mobility and Multihoming with the Host Identity Protocol”,
IETF RFC 5206 (http://www.ietf.org/rfc/rfc5206.txt), April
2008.

[7] J. Laganier, L. Eggert: “Host Identity Protocol (HIP)
Rendezvous Extension”, IETF RFC 5204
(http://www.ietf.org/rfc/rfc5204.txt), April 2008.

[8] Andras Varga, Rudolf Hornig: ”An Overview of the
OMNeT++ Simulation Environment”, in the Proceedings of
the 1st international conference on Simulation tools and
techniques for communications, networks and systems &
orkshops (SIMUTools2008), ISBN:978-963-9799-20-2,
Marseille, France, 2008.

[9] OMNeT++: A public-source, component-based, modular and
open-architecture discrete event simulation environment.

Official homepage: http://www.omnetpp.org/ [accessed on
April, 2009.]

[10] The Network Simulator – ns-2, Official homepage:
http://nsnam.isi.edu/nsnam/index.php/Main_Page [accessed
on April, 2009.]

[11] OPNET Technologies, Inc., Official homepage:
http://www.opnet.com [accessed on April, 2009.]

[12] The INET Framework for OMNeT++, Official homepage:
http://www.omnetpp.org/doc/INET/neddoc/index.html
[accessed on April, 2009.]

[13] The Mobility Framework for OMNeT++, Official homepage:
http://mobility-fw.sourceforge.net/hp/index.html [accessed
on April, 2009.]

[14] I. Baumgart, B. Heep, S. Krause: ”OverSim: A Flexible
Overlay Network Simulation Framework”. In the
Proceedings of the 10th IEEE Global Internet Symposium
(GI '07) in conjunction with IEEE INFOCOM 2007, pp.79-
84., DOI: 10.1109/GI.2007.4301435, Anchorage, AK, USA,
May 2007.

[15] Alfonso Ariza Quintana: ”INET framework with Manet
routing protocols”, Personal homepage:
http://webpersonal.uma.es/~AARIZAQ/ [accessed on April,
2009.]

[16] F. Z. Yousaf; C. Bauer; C. Wietfeld: “An Accurate and
Extensible Mobile IPv6 (xMIPV6) Simulation Model for
OMNeT++”, in the Proceedings of the 1st international
conference on Simulation tools and techniques for
communications, networks and systems & workshops
(SIMUTools2008), ISBN:978-963-9799-20-2, Marseille,
France, 2008

[17] Mobile IPv6 Implementation for the Omnet++ INET
framework, official webpage:
http://www.dlr.de/kn/en/desktopdefault.aspx/tabid-
4979/8336_read-14161/ [accessed on April, 2009.]

[18] HIPSim++: A Host Identity Protocol (HIP) Simulation
Framework for INET/OMNeT++, Official homepage:
http://www.ict-optimix.eu/index.php/HIPSim

[19] S. Kent, R. Atkinson: “IP Encapsulating Security Payload
(ESP)”, IETF RFC 2406, November 1998.

[20] Infrastructure for HIP (InfraHIP): Project focusing on
developing the missing infrastructure pieces of HIP, Official
homepage: http://infrahip.hiit.fi/ [accessed on April, 2009.].

[21] GÉANT: High-bandwidth, academic Internet serving
Europe’s research and education community, Official
homepage: http://www.geant2.net/ [accessed on April,
2009.]

[22] Tshark: The terminal terminal oriented version of Wireshark
network protocol analyzer, Official homepage:
http://www.wireshark.org/ [accessed on April, 2009.]

[23] Iperf: Tool for measuring maximum TCP and UDP
bandwidth performance, Official homepage:
http://www.noc.ucf.edu/Tools/Iperf/ [accessed on April,
2009.]

133

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

