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 4 
Abstract 

 

The present paper aims at studying the physics of the double oscillator field theory from a classical, 

non-perturbative perspective. In introducing the topic a short but to the point treatment of the physics 

of the quantum mechanics double oscillator is presented. A subsequent section of the paper 

summarizes the current state of research in the self-interacting scalar fields theory (with an emphasis 

on the specific physical systems generating spontaneous symmetry breaking). We further discuss in a 

non-perturbative framework a few classes of solutions to the double oscillator field theory. The focus 

is on analyzing the classes of upshots for the equation  

)()(2222 rJaSignmmt =−+∇−∂ φφφφ ,  

where J(r) is a source of the form )(0 rQ
&δ . We particularize this problem, looking at solutions of the 

form ax ±= )(ηφ . The classes of solutions are separately discussed in function of their complexity. 

Several results in this or in related domains are also acknowledged and further applied where possible. 

The paper introduces and leaves open the issue concerning similarity between the double oscillator 

field theory and the 4λφ  theory. 

 

 

 

1. Introduction 

 

We will start this paper by recalling that when we quantize the harmonic oscillator the creation 

operator evolves in a way that completely mimics the evolution of the classical solutions [6].  This is 

a settled result in physics and does not need detailed argumentation. The essence of the proof lies in 

the fact that  since coherent states are built from the vacuum by hitting it with exponentiated creation 

operators, it's also true that coherent states evolve in a way which completely mimics the evolution of 

the corresponding classical solutions. We contend that there is no reason to think that such an 

argument would not apply as well for the quantum field theory. Consequently it is worth trying to find 

classical solutions to the double oscillator field theory, for instance.  

 

Our target is to find classical solutions to the double well oscillator field theory, leaving a discussion 

open on the similarity between this theory and the theory of the self-interacting scalar fields ( 4λφ ). 

To illustrate this analogy, we will draw your attention to the explicit expression and behavior of the 

potentials in the case of the quantum mechanics double oscillator on the one hand and the 4λφ  field 

theory on the other hand. While in the first situation the potential will be of the form 
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VDO= 22 )|(|
2

1
am −φ , in the latter case the potential will have the expression  

Vfield=
422

!42

1 φλφ +m . The corresponding graphs of these potentials will look (for particular values 

of the parameters, irrelevant as such for our purpose here) as follows:  
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We see immediately the similarity between these two plots, where the graph in the right is 

representative for negative values of m2 (m=2i in this example). The meeting point is the substantive 

difference, where while the second of the potential functions is smooth enough (continuous and first 

order differentiable), the other one is just continuos but cannot be differentiated, thus it is not in the 

1C  set of continuous and at least once differentiable functions. 

 

It has to be kept in mind that in the case of positive values of m2  for the second plot, we find 

ourselves in the realm of the self-interacting scalar fields where the symmetric vacuum is locally 

stable, as we will investigate in detail in the section devoted to the analysis of the self-interacting 

fields. The graph in this “natural case” will have the following layout ( with m set to 0): 
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Summing up the findings herein, on an intuitive basis we would state that relations between the 2 

theories are expected (or in a more mathematical formulation, their likelihood of being similar is 
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considerable). On the one hand, the double well field theory (based on the quantum mechanics 

double oscillator in the last instance) will account for an exactly solvable model with spontaneous 

symmetry breaking. On the other hand, the general 4λφ  field theory is usually being approached by 

means of perturbation theory or other approximations1. Henceforth, a positive link between the two 

theories would be more than welcome. We do not make a purpose out of discussing in depth this 

issue, hereby limiting ourselves to classes of solutions for the double oscillator field theory. However, 

it is clear that the connection would constitute an interesting and challenging sequel to this paper. 

 

If we were to summarize the scope of this paper in a few words, based on similarities between the 

models investigated we try to analyze specific instances within the physics of the phase-transition. 

Such instances will be regular charges (the trivial solutions), but also bubbles around charges. In this 

latter case the charges will act as condensation points around which the bubbles form, materializing 

thus the connection between the 4λφ model with the double oscillator field theory model herein 

introduced. In the quantum field terminology, we are looking, inter alia, to bound-states of indefinite 

number of bosons, linked to such an interior charge (bubbles) or simply to the exterior, self-sustained, 

regular charges. Hence the classical solutions to the double field oscillator are elements of key 

importance in the phase transitions that can occur as soon as the potential has two minima (as spotted 

in the plots above). 

 

In the next two sections the similarities and differences between the 2 field theory models will 

become more obvious, as a detailed analysis will be performed on each of them. The main chapters 

following afterwards are directly addressing the classical solutions to the double oscillator field 

theory.    

 

 

 

2. Quantum mechanics of the double oscillator 

 

Before starting our attempt to find classical solutions to the field theory double oscillator, a discussion 

on the analogic situation of the quantum mechanics double oscillator is required. The similarity 

between these objects will be hopefully as obvious to the reader  as it was for the author. Although 

considerable amount of literature has been written on the subject, it is still useful to recall the essential 

aspects. In addition the treatment of the quantum mechanics double oscillator is particularly motivated  

                                                           
1 In the third chapter of this paper we will present such an approach dealing with the phase transition in 3+1 

dimensional 4λφ  field theory 
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when associated with particular phenomena. A concise treatment of the quantum double oscillator 

following this rationale is done by Merzbacher in one of the most coherent quantum mechanics books 

([1]), despite its considerable age.  

 

By studying the double oscillator we analyze a more complicated potential, essentially pieced together 

from two harmonic oscillators. The edge of the discussion is to consider the question of boundary 

conditions whose effects are observable from the discontinuities arising in the shape of this composite 

potential.  

 

To start with, most of the immediate applications of the double oscillator quantum theory come from 

molecular physics. Merzbacher chooses the example of the motion in the neighborhood of a stable 

equilibrium configuration, which can be approximated by a harmonic potential. Although one-

dimensional models are per se of limited utility here, important qualitative features can still be 

exhibited with such a linear model. We consider two masses �
1 and �

2 and constrain them to move in 

a straight line, connected among each other by a spring whose force constant is k and the length at 

equilibrium is a. If x1 and x2 are the coordinates of two designated mass points and p1, p2 their 

respective momenta, we know from classical mechanics that the non-relativistic two-body problem 

can be separated into the trivial motion of the center of mass and an equivalent one-body motion, 

executed by a particle of mass � =
21

21

µµ
µµ

+
 having a coordinate x=x1-x2 about a fixed center under the 

action of the elastic force [1] . We will limit ourselves to the relative motion of the reduced mass � .  

 

The wave equation generated by the equivalent 1-body problem described above has the following 

form:  

  i �
t

tx

∂
∂ ),(ψ

= - 
2

1),(

2 2

22

+
∂

∂
x

txψ
µ
!

k(|x|-a)2 ψ (x,t) (1) 

We see immediately that if a=0 , equation (1) reduces to the wave equation for the simple linear 

harmonic oscillator. When a≠ 0 we have “almost” the equation of a harmonic oscil lator whose 

equilibrium position has been shifted by an amount a, but not quite that. We have an absolute value; 

the potential energy in this case is V= 2)|(|
2

1
axk − .  Such a potential can be easily drawn with a 

software tool such as Mathematica 4.0. If we give the parameters particular values, we get the graphic 

below (set k=0.5 and a=4).  
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From the figure we notice that we deal with two parabolic potentials corresponding (recall the 

background of this discussion) to the situation where the first particle is to the right of the second 

particle (id est , x>0), respectively when the particles are in reverse order (id est x<0). The two 

parabolas are joined at x=0 where the common potential value is V(0)=V0=
2

2

1
ka . If we take a 

moment to discuss an already famed difference between the classical and the quantum world, we can 

make the following  observation: classically, if the energy level E<V0, we can actually assume that 

only one of these potential wells is present, as no penetration of barrier is possible; in quantum 

mechanics, even if E<V0, the wave function may have a finite value at x=0, which measures the 

probabili ty that two particles are found in the same place (in other words the barrier can be 

penetrated). This is nothing else but a specific instance of the EPR paradox. 

 

Before explicitly solving the equation of motion in this case, we assert some obvious observations as a 

sequel of the remarks stated above. A symmetrical double well li ke the one we deal with in here will 

have for energies that are way below the height of the barrier a corresponding pattern of “very nearly 

degenerate pairs of states” . The ground state with no nodes should definitely have a harmonic 

oscillator ground state function ω in each well . Each of these ground state function should go 

practically to 0 in the middle region where they meet smoothly. If we think ahead of the first excited 

state with one node we should have almost the same energy as in the ground state. The difference is 

that each wave goes to 0 in the middle region, but actually crossing the axis, while meeting smoothly 

in the middle and thus producing the node2.  

 

The explicit Schrodinger equation corresponding to the wave equation (1) above ( not depending on 

time) reads : 

                                                           
2 It should be clear that in this first excited state the wave function will have a harmonic oscill ator ground state 
function ψ  in one side and -ψ  in the other side, so that they can cross the axis. 
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-
2

1)(

2 2

22

+
∂

∂
x

xψ
µ

!
k(|x|-a)2 ψ (x)=Eψ (x)   (2) 

 For |x|>>a, equation (2) approaches the Schrodinger equation for the simple harmonic oscillator  

-
2

1

2 2

22

+
∂
∂

x

ψ
µ

! � 2ω x2ψ =Eψ ; therefore the physically acceptable eigenfunctions must 

be required to vanish as |x| � � .  

 

Note that as a is varied from 0 to � , the potential changes from the limit of a single harmonic 

oscillator well to the other limit of two separate oscillator wells divided by an infinitely high and 

broad potential wall (an observation also made above, when trying to “guess” the pattern of the 

solution).  In the simpler case we have non-degenerate energy eigenvalues [1]:  

 

 En= )
2

1
( +nω! = )

2

1
( +n

k

µ
! , where n=0,1,2...  

In the other extreme case, when we think of two separate oscillator wells the energy values shall be 

exactly li ke these ones above only that each of them will be doubly degenerate since the system can 

occupy an eigenstate of either one of the two wells. As the parameter a is varied, the energies and 

eigenfunctions will change continuously between the 2 limiting cases. This is the adiabatic change of 

the system [1]. Nonetheless, as the potential is being distorted, certain features of the eigenfunctions 

remain unaltered. An example of this sort of adiabatic invariants is the number of nodes of the 

eigenfunctions. Indeed, given that one eigenfunction has n nodes, it cannot change this number in its 

transition from the potential in the extreme lower case to the extreme higher case. The proof of this 

assertion is immediate and can be found in a very detailed description in  [1], page 68. Extremely 

interesting is the consequence of this remark, namely that being an adiabatic invariant, the number of 

nodes characterizes the eigenfunctions of the double oscillator for any value of a. A rigorous solution 

for providing the eigenvalues and the eigenfunctions is introduced by splitting the cases for positive 

and negative coordinates [1]. Thus, for positive x we introduce  

z= )(
2

)(
4 2

1

2
axax

k −




=−







!!

µωµ
   and  E= )

2

1
( +νω!  

 

For negative x we have almost the same equation,  with a small difference in the substitution relation: 

z’= )(
2

)(
4 2

1

2
axax

k +




=+







!!

µωµ
 

By differentiating in both cases we obtain the following equations:  
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0)
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=−++
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∂ ϕνϕ z

z
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2

1
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2

2

2

=−++
∂
∂ ϕνϕ z

z
. It is plain as day 

that for a=0 the 2 equations above become identical and we deal again with the harmonic oscillator.  

 

The originality of the approach in Merzbacher rests in the method employed for solving the 

differential equation above. Certainly the incipient idea would be to proceed with a detailed power 

series treatment. Merzbacher uses instead a parabolic cylinder function in order to find a particular 

solution. This function is defined as:  

 )]
2

;
2

3
;

2

1
(

)
2

(

)
2

1
(

22
;

2

1
;

2]2/)1[(

)
2

1
(

[2)(
2

11

2

11
)4/(2/ 2 z

F
zz

FezD z ν
ν

ν
ν

ν
ν

−

−Γ

−Γ
+





−

−Γ

Γ
= − ,  

 

where 11 F  is the confluent hypergeometric function. The function is expandable in power series as 

follows:  11 F (a;b;z)=1+ ...
!2)1(

)1(

!1

2

+
+
++

bb

zaaz

b

a
=

!0 k

z

b

a k

k
k

k∑∞

=
 

As our purpose in this section is more to outline the reasoning and the originality of the approach 

rather than describing the technical subtleties, we will keep to that, leaving the unsatisfied reader with 

the possibili ty of consulting himself the further reference for this section. The underlying reasoning is 

constructed as follows: if )(zDν is a solution of the discussed differential equation above than 

immediately )( zD −ν is a solution of the same equation and moreover these solutions are linearly 

independent unless ν is a nonnegative integer. It follows that a double oscillator eigenfunction must 

be proportional to )(zDν for positive values of x and proportional to )( zD −ν for negative values. It 

remains to join these solutions at x=0, this being the point where the two parabolic potentials meet 

with a discontinuous slope. We investigate therefore the singularity of this point. Since the 

Schrodinger equation is a second-order differential equation, ϕ  and its first derivative must be 

continuos. In other words ϕ  must belong to the C2 class of functions with continuous first derivatives. 

By extension, if 0xx = is indeed a singularity point, we can integrate the Schrodinger equation from 

ε−= 0xx to ε+= 0xx . Then  

 

dxxExVxx
x

x

)(])([
2

)(')('
0

0

200 ψµεψεψ
ε

ε

−=−−+ ∫
+

− !
 

The immediate contention is that as long as V(x) is finite the equation above implies that 'ψ  is 

continuous across the singularity. It follows that ψ should also be continuous. We can further assume 
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that the eigenfunctions have definite parity, even or odd. If an even function of x has a continuous 

slope at x=0, as the joining condition requires, that slope must be 0. On the other hand from basic 

analysis it follows that if an odd function of x is continuous at the origin, it must vanish there. Thus, 

by matching  

ψ and 'ψ  at x=0 leads at the following transcendental equations for v : 

             0)
2

(' =− aDv
!

µω
, if ψ  is even and 

                                                   0)
2

( =− aDv
!

µω
if ψ is odd. 

In general it is difficult to calculate the roots v of the equations above. Explicit formulas can be 

obtained if EV >>0 for instance. The unnormalized eigenfunctions can be still written in function of 

these above equations. Thus, 

 ))(
2

()( axDx v −=
!

µωψ  for x>=0 and ))(
2

()( axDx v +−±=
!

µωψ for x<=0. 

All in all , we have followed the Merzbacher’s reasoning in finding the eigenvalues and eigenvectors 

of the quantum mechanics double oscil lator and attained a preliminary goal. In what follows we wil l 

shift from the quantum mechanics to the quantum field theory world, discussing the physics of the 

self-interacting scalar fields. 

 

 

 

3. The physics of the self-interacting scalar fields 

 

We depart in our analysis from the by now universally agreed fact that all particles in the Standard 

Model acquire their masses from a non-vanishing expectation value <φ > of a self-interacting scalar 

field and we follow the reasoning of Consoli and Stevenson in this respect[2]. The idea is considered 

relatively simple and has already had a long-history behind; nonetheless the nature of the phase 

transition in the 4λφ  scalar field theory remains a hard task and must be given careful consideration. 

 

Looking through the perspective of the classical observer we only need to consider a potential of the 

following form:  

    Vcl(φ )= 422

!42

1 φλφ +m  
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If we vary the m2 parameter, we can notice that the phase transition will actually occur at m2 =0. 

Indeed, a graph of that potential for m2=0 and =λ 1, with φ  being varied from –10 to 10, for 

instance, would look as follows . 
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Obviously the assumption above can only be satisfactory in the realm of the classical physics. In the 

quantum theory the question is more subtle. In particular, even if we know that the symmetric vacuum 

is locally stable if m2>0, we cannot be sure that this symmetric vacuum is necessarily globally stable. 

In other words we need to ask ourselves whether the phase transition could actually be of a first order 

and hence occurring at some small , but positive m2 [2]. 

 

The standard approximation methods for the quantum effective potential are not appropriate in this 

situation [2]. It has been suggested that the Gaussian method provides a clue, producing a result in 

agreement with the one-loop effective potential in 3+1 dimensions [2]. The basic idea adopted by 

several authors is based on the “ triviality” of the continuum limit of 4λφ . The immediate implication 

of this presumption would be that the effective quantum potential should be physically 

indistinguishable from the classical potential plus some “zero-point-energy” contribution of free field 

form arising from fluctuations (which would also lead to the fact that all approximations using this 

assumption are in the end equivalent). In a mathematical form the trivial potential would be:  

V triv(φ )=Vcl(φ )+
V

1
)(

2

1 22 φMk
k

+∑ ,  

where M(φ ) denotes the mass of the shifted field h(x) =φ (x)- φ , in the presence of a background 

field φ . After mass renormalization and subtraction of a constant term [2], V triv(φ ) consists of φ 2, 

φ 4, and φ 4 ln φ 2 terms.  The very point of this contention is that any detectable difference in this 

model would imply interactions of the h(x) field. However,  as we assumed that the theory is  ‘ trivial’ , 

we are not suppose to obtain such  interactions. Then it must be that there is an infinite class of  

“ triviality-compatible” approximations, all yielding the same result. Such approximations can be 
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arbitraril y complex provided that they have a variational structure, with the shifted field h(x)= 

φ (x)- φ  having a propagator determined by solving a non-perturbative gap-equation. If the 

approximation is “ trivially compatible” [2], this propagator reduces to a free-field propagator in the 

infinite-cutoff limit. In that limit all differences among these various approximations can be absorbed 

into a redefinition of the parameter λ (and this was our aim when working with the assumption of 

‘ triviality’) , which makes no further difference when the effective potential is expressed in terms of 

physical renormalized quantities.  

 

If we now return to the introduction of this topic and suppose that spontaneous symmetry breaking 

does indeed coexist with a physical mass m2 ≥ 0 for the excitations of the symmetric phase, those 

excitations would actually be real particles. These “phions” will play the main role in the 

reformulation of our initial question: how is it possible for the broken-symmetry vacuum, a 

condensate with a non-zero density of phions, to have a lower energy density than the ‘empty’ state 

with no phions at all?  The solution rests after Consoli and Stevenson in the fact that the phion-phion 

(or 4λφ interaction) is not always repulsive, but there is also an induced interaction that is attractive. 

Moreover it is secured that as m
�

0 the attraction becomes so long range (-1/r3), that it generates an 

infrared-divergent scattering length. Following this rationale, the long-range attraction makes it 

energetically favorable for the condensate to form spontaneously. And this constitutes nothing else 

but a physical mechanism for spontaneous symmetry breaking.  

 

Consoli and Stevenson do not stop here in their paper. It is contended furthermore that “even an 

infinitesimal two-body interaction can induce a macroscopic range of the ground state if the vacuum 

contains an infinite density of condensed phions” . This is consistent with the condensate density being 

infinite in physical length unit [3].  Further using units with 1== c
�

and the single-component 4λφ  

theory with a discrete reflection symmetry, φφ −→ , which is consistent with our approximations, 

the inter-particle potential between the phions is discussed. An estimate of the energy density of a 

phion condensate is subsequently achieved in an intuitive way. The research paper concludes with a 

section on the phases transition resulted from the field-theoretic effective potential, including a 

discussion on how this effective potential can be written in a finite form in terms of the renormalized 

field. We will re-assert herein the results concerning the inter-particle potential and the implications 

on the phase transition.  

 

Consoli and Stevenson notice that the inter-particle potential is essentially given by the sum of a so-

called “repulsive core”, )()3( rδ , and an “attractive part “ , 
3

1

r

−
, that is eventually cut off exponentially 
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at distances grater than 
m2

1
. As an exact expression of this long-range attractive potential 

the following has been found: 
323

2 1

256
)(

rE
rV rangelong π

λ−=− .  

A very important result of this long-range interaction resides in the expression of the ground state 

energy density for a large number of phions (N) in a large box of volume V with a fixed density 

n=N/V. The way this ground energy density is reduced follows from the assumption of considering n 

low enough so that the rest-masses Nm and the 2-body interaction energies form alone the total 

energy in the ground state3. In other words the contention above can be reformulated as 

uNNmEtot
2

2

1+= , where u is the average potential energy between a pair of phions: 

)(
1 3 rrVd
V

u ∫≈  . Provided that m is very small, we might have that even though the empty state is 

locally stable, it might decay by spontaneously generating particles so as to fill the box with a dilute 

condensate of a non-zero density. We find extremely relevant the translation of the particle density  

into field theory ( 2

2

1 φmn = ). The energy density as a function of n becomes then the field theoretic 

effective potential4. The result is embedded in the following expression:  

0

max
2

424
22 )(

ln
256322

1
)(

r

r
mVeff

φ
η

φλλφφφ −+= .  

 

Consoli and Stevenson actually prove the expression of the efficient potential (derived above on an 

intuitive basis) by using a relativistic version of the original Lee-Huang-Yang analysis of the Bose-

Einstein condensation of a non-ideal gas [2]. We will not insist on this rather technical approach and 

will further focus on the discussion of the phase transition. )(φeffV is found to have an important 

qualitative difference when compared to the classical potential. This is extremely interesting as the 

present paper focuses on classical solutions to the double oscillator field theory and prepares the 

ground for further comparison between the quantum mechanics and quantum field theories on the one 

hand and the classical approach, on the other hand. Concretely, the classical potential has a double-

well form only for negative 2m  values and has a phase transition of second order at the value 2m =0. 

                                                           
3 Although not every researcher would agree, the basis of the assumption here is that the gas of phions is dilute 
and therefore effects from three-body or multi-body interactions will be negligible 
4 The energy density as a function of n can be found by setting E=m since almost all phions have k=0. Hence 

Consoli and Stevenson obtain the result: ∫−+=
r

dr

m

n

m

n
nm

22

22

2

2

648 π
λλε . 
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With )(φeffV  on the other hand, the phase transition occurs at 22
cmm = , where 

e

v
mc

2
0

2

2
2

128π
λ= 2m≥  . 

The resulting form of the effective potential and the value at which the symmetry is broken are 

imminent in a “ trivial” theory such as the one employed by Consoli and Stevenson. However, despite 

this triviality, a rich hierarchy of length scales is found to emerge.  This hierarchy is perfectly 

summarized in [2].  

 

An interesting discussion on the renormalized form of the effective potential is conducted in the last 

section of the Consoli-Stevenson paper. Using a renormalized field BR Z φφ φ
2/1−=  (for theoretical 

background one can consult [10]) , where φZ is a re-scaling factor, the effective potential can be 

written in a manifestly finite form. A finite parameter ς is defined ahead in this respect: 
22

2

8 R

hM

νπ
ς = . 

Imposing the necessary boundary conditions we find as final form of effV  the following: 

)
2

1
(ln)2()1()(

2

2
4222222 −+−−=

R

R
RRRRReff v

vV
φφςπφφςςπφ  

We can see immediately that  in the extreme case 0→ς we actually deal with the classical potential 

result. It is computed that the symmetry-breaking phase transition occurs at 2=ς (which corresponds 

to the value 22
cmm = ). What was achieved by renormalization is in fact an intrinsic parameterization 

of the effective potential by the two independent quantities ς  and 2
Rv  (the vacuum expectation value). 

They replace the two bare parameters 2m and λ of the original Hamiltonian. As a final observation, it 

is interesting (also for the purpose of this paper) to discuss the range 1>ς >0 which corresponds to 

negative values of 2m . This is the range of the so-called tachionic phions. A graph for the case 2m <0 

has been introduced in the introduction chapter when investigating in a first-analysis perspective the 

correlation between the 4λφ theory and the double oscillator field theory.  

 

In this chapter we have thus analyzed the self-interacting field theory around its symmetry breaking 

values. However we did not question ourselves yet how sensitive would this phase-transition be in the 

presence of sources of the scalar field. A traditional concrete example in this sense is the much 

discussed electroweak model where these sources are materialized in quarks or leptons. In the next 

section we introduce a similar self-standing model, the double oscillator field theory model. It was 

already acknowledged in the previous paragraphs that phase-transitions usually lead to discontinuities. 
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We will i nvestigate whether an intermediate stage in this phase-transitions and subsequently, a well 

behaved model to account for these discontinuities, can be constituted by classical scalar field 

sources, namely solutions to the double oscillator field model. In this paper we investigate simple as 

well as composite solutions in the realm of the field theory double oscillator. 

 

 

 

4. Simple solutions to the double oscillator field theory 

 

After an in-depth discussion of the quantum double oscillator and the 4λφ  field theory, pointing out 

necessary similarities and differences, we shall aim at finding exact solutions to the double oscillator 

field theory. We first investigate the existence of the simple solutions, that is regular charges (the 

almost trivial case) and the regular bubble solutions, in other words the solutions corresponding to the 

phase transitions in the 4λφ theory  discussed above.  

 

Before getting more concrete, we ought to clarify the pragmatics of our research. It should be by now 

clear what the use of the classical solutions can be in this situation. Firstly, the classical solutions 

(with special emphasis on the bubble solutions) are related to N-boson production amplitudes; to state 

it otherwise, we are testing herein whether we eventually deal with “bubbles of bosons” , that is 

whether we deal with bound-states of a huge number of bosons, condensed around a charge [8]. What 

exactly are these bubbles? Probably a perfect definition cannot be found, nonetheless they can be 

described as quantized droplets of a different vacuum phase, which at the same time are non-

perturbative resonant states of the field investigated [7], [8]. Secondly, these classical solutions play a 

very important role as intermediate products in the phase-transitions in general and, as a definite 

application, in the early universe. The cosmological background represents a challenging research 

ground in this sense [6] . In the light of all these reasons, we find ourselves very motivated in 

assessing the existence of this sort of solutions. As an additional observation, the fact that non-

perturbative means are employed is again a potential improvement to usual approaches. 

 

Let us  first introduce the following equation of motion (equation that will play the guiding role in our 

further calculations):  

Eqm(φ )= )()(2222 rJaSignmmt =−+∇−∂ φφφφ  (* ),  

where J(r) is a source of the form )(0 rQ
&δ  that enables this motion. In what follows we discuss in 

consecutive subsections the regular charges, respectively the regular bubble solutions to this equation.  

We have some common provisions that will apply to both subsections. Firstly, we use a spherical 
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coordinate system, as intuitively it is more than clear that the dependence shall remain on r alone 

for the simplest cases (applications in [1], [12]). Secondly, in order to simplify the understanding and 

the consequent computations, we denote solutions to the equation of motion above by5 {{ sign of 

charge; sign of vacuum} in  and {{ sign of charge, sign of vacuum}} out. Then we can immediately 

identify which cases will correspond to possible regular charges and which correspond to regular 

bubble solutions (same sign of charge and vacuum means a single charge solution).  

 

As far as regular charges are concerned we will have the cases:  

)},(),,{( ++++=Λ + , respectively )},(),,{( −−−−=Λ −  

Logically, it follows that the regular bubbles are:  

)},(),,{( −+++=Ξ+  

)},(),,{( +−−−=Ξ−  

)},(),,{( ++−+=Ξ+  

)},(),,{( −−+−=Ξ−  

It should be clear from the reasoning above that these are the only possible configurations having a 

single bubble wall (that is, they contribute as “simple” solutions to the total solution space) 

 

Thirdly, we particularize the problem in that we search for solutions generated by sources of the 

particular form ax ±= )(ηφ . We contend that generality loss does not necessaril y happen as result 

of imposing such a restriction, as the conclusions drawn in the end are again subject to generalization. 

 

 

 

4.1. Regular charge solutions 

 

In order to separate the two charge solutions we introduce a positive test charge Q0. Subsequently our 

regular charges will be of the form:  

a
mr

e
Qr

mr

+=Λ
−

+ 0)( , respectively a
mr

e
Qr

mr

−=Λ
−

− 0)(  (the Yukawa expression is in agreement 

with the restriction on the source ax ±= )(ηφ  imposed above, being also a standard form used in this 

sort of computations) 

All that remained to do is substitute these solutions in the equation of motion exposed above and 

check that we are indeed dealing with “regular charges” , that is charges in a vacuum of equal 

                                                           
5 The notation herein has been inherited from the previous notes on the subject, of Dr. Frank Witte 
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signature. In order to be able to assess the correctness of these solutions, we will use a 

qualitative interpretation, plotting them: 
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We notice that the representation is in conformity with our assumption, hence we can conclude that 

the ground state with a certain sign supports Yukawa charges with an equal sign. It needs to be noted 

however that herein we do not take into discussion time-dependent solutions, thus making a trivial 

assumption of the vacuum condensate being time independent. Nonetheless we can safely contend 

that regular charges of the given form are indeed solutions to the double oscillator field theory.  

 

 

 

4.2. Regular ‘bubble’ solutions 

 

If the regular charges solutions were approaching triviality, in the case of the regular bubbles we are 

faced with a considerable heavier task. We start using the same intuitive reasoning trying to “guess” 

the form of these second-class solutions. Getting back to the background of our research, we recall 

that we talk about symmetry breaking in a field theory. As it was brought forward in preceding 

paragraphs, this symmetry breaking arises possibly in the form of discontinuities. If we match a 

charge into a vacuum of a different sign, there will definitely be a discontinuous jump in the second 

space derivative of the field. However, not all these cases are necessarily consistent with the model 

and that requires careful investigation. 

 

Essentially, the bubble solutions could exist where the potential of the double field oscillator has two 

minima. Locality does not play a role here, the minima being absolute in the case of the double field 

oscillator6.  

                                                           
6 This is taken in contrast with the self-interacting field theory, where Consoli and Stevenson clearly contend a 
questionable single minimum, at least in the first place. See the  corresponding chapter above or refer to the 
paper by the mentioned authors ([2]) 
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We use again a test charge Q as a strictly positive constant and we define the possible types of 

“bubbles” in function of this test charge. We use the following framework solutions (which will 

constitute substantial solutions once the vacuum value has been accounted for): 

)()( 21
mrmr

in ecec
mr

Q
r +=Φ − , while 

mr
out e

mr

Q
r −=Φ )(  

where the two equations stand for the inside, respectively for the outside solutions within the field. 

It is clear that the bubble wall is located where the effective potential becomes 0 and where the 

vacuum is behaving “unnaturally” .  In this chapter we solely consider single charges in our system, 

thus the bubbles will depend only on the radius r generated by these point charges.  

 

In function of the inside/outside solutions above, we can define the bubbles. It’ s simply logical that 

we can only have four kinds of them. They bare the same framework form in terms of exterior and 

interior solutions. Namely in both cases the Yukawa potential [3], [12],  
mr

e mr−

 is decisive (as one can 

readily notice in the framework solutions above), the vacuum value a making the difference (as being 

added or subtracted, respectively). The possible cases are the following: 

arr in +Φ=Ξ+ )()( , if r<R  and arr out −Φ=Ξ+ )()( , if r>R 

arr in −Φ−=Ξ− )()( , if r<R and arr out +Φ−=Ξ− )()( , if r>R 

arr in −Φ=Ξ+ )()( , if r<R and arr out +Φ=Ξ+ )()( , if r>R 

arr in +Φ−=Ξ− )()( , if r<R and arr out −Φ−=Ξ− )()( , if r>R,  

where R is the radius of the bubble. 

 

Let us take a closer look to each of these solutions.  

 

For the first type of bubble solutions, )(r+Ξ , the outcome is the following. 

Checking the values for the coefficients c1 and c2 and consequently computing the field, we find that  

R is restricted as a function of the charge to vacuum parameter 
a

Q
z = . We also need to have, 

following the conditions for the interior of the bubble, that 0≤−
−

a
mr

Qe mr

, which puts an upper limit 

on the radius. Subsequently, if the value for r drops below this limit the outer field will no longer be a 
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solution to the equations of motion. The maximum radius is thus found as a limit solution 

to the equation above.  A qualitative interpretation of the maximum radius in function of the charge-

to-vacuum ration has been plotted below: 
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We see in a clear way the dependence between the maximum radius of the bubble and the charge-to-

vacuum ratio. By analogy to the previous chapter on self-interacting scalar fields, this charge-to-

vacuum ratio obviously plays the role of 2
Rv , the so-called vacuum expectation value. An increased 

ratio would increase the radius in inverse mass units.  

 

As the properties of this bubble strictly depend on the charge/vacuum parameter, we are definitely 

interested in its qualitative behavior for certain values of this parameter. A plot for a few values is 

presented below: 
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Hereinabove the considered values of z were 10-2, 10-1, 100, 101, 102.  

The graph is speaking for itself: the bubble here is represented by a positive charge in a negative 

vacuum. Or this was the initial contention when we departed in analyzing this type of bubbles. 

 

In the light of the foregoing, we note that the existence of the bubble is not questionable (the bubble 

behaves as a positive charge in a negative vacuum) and moreover we are reminded again that the 

bubble wall is always located at the null point of the field. 
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Further we need to check the second possible type of bubble solutions, )(r−Ξ . Reasoning in a similar 

way as in the paragraphs above, we get again a restriction on the range of values for R, the parameter 

being again the charge-to-vacuum one. On the other hand, checking for the exterior boundary, we get 

the same condition as in the case of the first type of bubble solution. We can thus directly investigate 

the qualitative behavior (imposing the same charge-to-vacuum parameter values as in the preceding 

section): 
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From the graph above it is more than clear that the second type of bubble solution is representative for 

bubbles behaving as negative charges in a positive vacuum, in other words the opposite of what we 

obtained in the case of the first type of bubbles (they are simply symmetric states in terms of the 

framework solutions) 

 

We arrived at the case of the bubble solutions )(r+Ξ  , with the bubble wall appearing in the left side 

of the conventional notation. We follow the same steps as in testing the preceding cases. R will still 

depend on the charge- to- vacuum parameter but this time in a different manner than we had before. A 

straightforward computation indicates that R is actually a strictly monotonous function of the charge-

to-vacuum parameter7. It is worth noting that checking the existence of the bubble from the outside 

we obtain an identity, hence the bubble could in principle exist in the field, but nonetheless, as 

previously proved, it would not be sustained from the interior. And for a bubble to exist the 

combination between the exterior and interior condition has to be fulfilled. Thus bubbles of this type 

do not exist as proper solutions to the considered equation of motion.  

 

                                                           
7 The mere thing we are required to do here is to study the zero’s of the function: -

1+
r

zeReRee RrRRr ))1()1(( 22 ++++−−−

. We obtain that this is monotonically increasing and has no 

zeros. 



 22 
We could already reason by means of symmetry in the case of the last type of bubble. Evaluating 

the conditions, we find that the same interior equation does not have any solutions in that interval. 

However, from an “outdoor” perspective, the field would allow this bubble to exist as the condition 

for the exterior of the bubble is always satisfied.  

 

We observe that in the last two cases no match of the interior to the exterior solutions is needed, since 

for all values, the interior condition cannot be fulfilled. Thus this step is superfluous.  

 

In conclusion we contend that as far as regular bubbles are concerned, id est charges in vacuums of 

different signs (with single bubble wall), we can have two possible cases, namely  

)},(),,{( −+++=Ξ+ and 

)},(),,{( +−−−=Ξ− .  

Therefore the set of solutions to the double oscillator field theory comprises so far regular charges and 

single wall bubbles, where the latter can exist only in the first two instances. 

 

So far we have ignored the possibility of a second charge in our system ; we have discussed only the 

simple solutions to the double oscillator field theory where the upshot could be simply regular charges 

(or charges in vacuum of the same signature) or regular bubbles (charges in vacuum of different 

signature). These regular bubbles were all spherical and had symmetry properties, as they were 

condensed around a single point charge. What happens however when a second charge is added? How 

does the physics of the field modify? What will be the location of the bubble wall in this case? We try 

to come with meaningful answers to these questions in the next chapter. 

 

 

 

5. Composite solutions to the double oscillator field theory 

 

In so far we have treated only regular solutions to the double field oscillator field theory, namely 

regular charges and regular bubbles. As already introduced in the preceding chapter, should we 

consider a second charge, the spherical symmetry of the bubbles will intuitively be disturbed. We will 

thus have to incorporate in our total set of solutions so called composite solutions. We can think of at 

least three category of phenomena interesting to be studied in this respect: interactions between 

bubbles and regular charges, interactions between bubbles as such and dipole solutions. The ‘moment 

generating function’ of all these phenomena will be the structure formed by the 2 charges considered, 

with focus on their separation distance. In what follows we will study the extremum cases (charges 
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superposed or very close, respectively charges situated extremely far away from each other) and 

then we will get to the more difficult case of studying the character of the solution in function of their 

“separation” distance parameter. 

 

Given that the double oscillator theory is in essence a linear theory (linearity is preserved when 

transiting from quantum mechanics to quantum field theory), the potentials might be in principle 

superposed. We emphasize “ in principle” as we need to be extra careful where the total sum of the 

potential becomes 0 and where subsequently we need to fit the interior to the exterior solution8. It is 

very li kely that in the realm of the composite solutions, the interior solution will depend on more than 

just r, hence a spherical coordinate system is not appropriate when studying the behavior of the double 

oscillator field theory herein. Instead, we will try to solve the system in a cylindrical fitting. We 

expect rotational symmetry around the charges axis. In what follows we investigate this types of 

solutions focusing on the behavior of the exterior solution, as we are interested in the existence of 

these bubbles first of all from the field perspective.  

 

5.1. Extremum cases 

 

The equations that we will use for the exterior, respectively the interior solution, are of course based 

on the corresponding equations for the spherical bubbles case, with the exception that this time the 

bubble will also depend on the z parameter (as we expect rotational symmetry around the z axis). We 

will herein consider the exterior solution, in order to inspect if the bubble could at all exist : 
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where k is the separation parameter between the two charges (we assume of course that k<<R). 

 

Before analyzing the exterior potential in more detail, we make the remark that the interior solution 

will also be constructed on the Yukawa potential, hence it is build on a similar framework as the 

interior solution for the regular charges; finding non-perturbatively this solution is more than causing 

trouble, hence we will assume for the moment that the existence of this solution is not questionable 

and thus we can investigate the overall solution by pinpointing to the exterior one.  

 

We start by looking closer to the cases where the separation parameter between the existing and the 

incoming charge are 0, respectively ∞ . This cases are easy to treat and the results will reduce to 
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simple solutions of the double oscillator field theory. We notice that for k= ∞  the second term 

completely vanishes and we have to deal with a single charge in a bubble, or in other words with an 

upshot described as a bubble condensed around this charge. This type of solution was already 

analyzed in the previous section, the solution here being thus of a similar pattern. Taking k=0 we 

notice that the two charges simply add up (superposition of potentials).  Hence we have the same case 

as previously, with the observation that if the charges are opposite, in an obvious way they will cancel 

each other. We will henceforth investigate these two cases altogether. 

 

If we are to plot the evolution of the radius in function of z for the cases where the separation 

parameter is ∞ , respectively 0, we will be surprised to notice that they behave almost identically 

(ignoring the scale difference, of course). And this is after all a simple logical  consequence of the fact 

that superposed charges or charges at an infinity distance will “produce” a bubble with similar 

features, namely a bubble condensed around the charge taken as reference. 
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We can see the similarities in the plots above, where the parameters were all set equal to unity, for 

simplicity9. What we also notice is that the radius has exactly the same pattern as we discovered with 

regard to the regular bubbles; this is again simply following from the fact that extreme cases boil 

down to simple solutions. Let us look for a moment at the expression of the radius in function of the z 

coordinate for the cases k=0  and respectively k=∞ . We have 

 

r � � �
m2z2 � ProductLog � m � Q1� Q2�

a � 2
m , for k=0 and 

r 	 
 � m2z2 � ProductLog 
 mQ1
a � 2

m , for k= ∞ .  

In both expressions above, ProductLog(x)  gives the principal solution for u in the equation x= uue .  

                                                                                                                                                                                     
8 We have insisted already in matching the solutions in the preceding sections, when treating the simple 
solutions to the double oscillator field theory. Hence no supplementary explanation is given here. 
9 In general of course R will be represented in units 1/m, but as we set here m=1 we can ignore them  
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We clearly observe now the relation between these 2 extreme cases. We also see that by setting 

all parameters equal to unity (implying that we work with unity charges as well), the effect of the 

second charge in the case k=0 falls from contributing in a significant manner and hence the almost 

identity in the 2 plots.  

 

We expect the behavior of the exterior solution to copy more or less the pattern of the one in the 

regular charges. Of course there will be some noise added because of the additional charge. We leave 

to the ambitious reader the task of manipulating the equation and find the framework solution (we 

suggest the use of the Mathematica family software as the computations are otherwise an impossible 

task). Hereinafter we reproduce the plot of the exterior solution functions for the extreme cases using 

the same values for the parameters (m=1, Q1=1, Q2=1, a=2). 
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There is without any doubt more to discuss about extreme situations, however a much more 

interesting and challenging task is to see what happens while we vary the separation parameter 

between the 2 charges of our system. The next section gives an overview on this aspect. 

 

 

5.2. Complex interaction cases 

 

To our disappointment solutions to the case of complex interactions were not found with the same 

precision as before. While non-perturbative methods applied in an analytical framework failed to give 

any desired results, numerical methods did not perform better, achieving results only for the limiting 

cases discussed above. In other words, once we start the discussion on the complex cases where the 

separation parameter is not 0 or ∞ , traditional numerical methods such as Newton’s or the secant 

method, fail. 

 

However, given that more than satisfactory results were obtained as far as simple solutions are 

concerned, we can try to reason on the complex situation using the heuristics provided therein. It is 

plain as day that the simple solutions can be taken as limits to the complex cases. Expanding on this 
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idea, if we consider close solutions to the limiting cases discussed in 5.1 we can try to use the same 

estimate for the radius, modifying solely the value of the separation parameter. In this spirit, let us 

consider the case were the separation parameter would be unity. We plot the exterior solution in what 

follows; we use the same reference value of the radius as for the limiting case k=0.  
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We notice the difference from the limiting case. Due to the fact that the choice of the parameters has 

to be extremely careful in order to get a meaningful plot, we can say that the graph might not 

reproduce a perfect situation; moreover we have the solution in terms of z, hence we cannot compare 

it directly to the similar solution within the regular bubble realm. Nevertheless, we can ‘guess’ that 

the bubble will become an ellipsoid rather then a sphere and with increasing separation parameter will 

lose more and more of its unity until i n the end will become two separate parts, or a pure dipole.  

 

We leave the further investigations of these cases to a sequel of this paper and in what follows we try 

to present the conclusions to our research, not before discussing the application background and of 

course, the issue concerning the stability of the bubbles. 

 

 

 

6. Discussion and Conclusions. 

 

We have analyzed in this paper the types of classical solutions to the double oscil lator field theory. A 

discussion on the importance of the classes of solutions in the context of the quantum field theory has 

not been done yet, however. We shall not leave such an important issue uncovered and shall treat in 

what follows the background of this research. 

 

According to the standard model and to its extensions, symmetry breaking phase transitions are 

expected to have occurred on a massive scale in the early universe. It is a known fact that the 

mechanism by which these transitions can happen can be spinodal decomposition [7] or the formation 

of the bubbles of the new phase of the universe with the old one. Or this is the most amazing 
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application of our bubble solutions, largely discussed in this paper. The vacuum stages 

separated by the bubble wall herein are nothing but the early universe and the actual universe. It is 

true that the bubble theory is commonly accepted especially as far as the electroweak phase transition 

is concerned, while the spinodal decomposition is favored otherwise; nevertheless the generating 

mechanism is interesting to study for all cases. To finish our idea about the formation of the universe, 

the phase transition bubble will expand and collide with each other until the whole volume is 

occupied10, at which time the transition early universe
�

 actual universe is considered fulfilled.  

 

Another issue that was not brought in for discussion but certainly has its scientific merits is the 

stability of the bubble solutions to the double oscillator field theory. Configurations of the regular 

bubble type investigated by us in the section dedicated to the simple solutions of the double oscil lator 

field theory were studied some time ago by N.A. Voronov and I. Y. Kobzarev and their results were 

re-asserted in several contemporary papers [8]. In particular it was found that these configurations are 

reasonably long li ved11, namely that these kind of bubbles undergo several pulsations of their radius 

before decaying into outgoing waves, for instance. Hence, the configurations found by us as possible 

regular bubbles solutions, 

)},(),,{( −+++=Ξ+ and  )},(),,{( +−−−=Ξ− ,  

are li kely to be “reasonably stable” . We cannot say of course too much in this respect as far as the 

composite solutions are concerned, as no exact identification of them could be produced by using the 

classical techniques. Nevertheless we do expect approximately the same reasonable stability as the 

composite character would not influence the undergoing of radius pulsations before decay. 

 

We have investigated in this paper classical solutions to the double oscillator field theory, using non-

perturbative methods. Simple solutions to this theory were successfully found. They are regular 

charge solutions and regular bubble solutions of the form )},(),,{( −+++=Ξ+ and 

)},(),,{( +−−−=Ξ− . It was at the same time proved that second type of regular bubble solutions (of 

the form )},(),,{( ++−+=Ξ+ and )},(),,{( −−+−=Ξ− ) do not exist as proper solutions to the 

double oscillator field theory, even if from a sole exterior point of view their existence is not 

precluded. We have further investigated complex solutions to the field theory analyzing them from the 

exterior perspective. We found the limiting cases for zero separation between the test charges, 

respectively infinite separation between the charges, as the analogues of the regular cases. The idea of 

                                                           
10 The nucleation of the bubbles [5], [6] takes place before their per se expansion, but this phenomena is beyond 
the purpose of the present paper  
11 The Russian team working on this research employed a numerical study of the classical evolution of the field 
of the bubble-type configuration and has revealed that in the long run the bubbles will emit a large portion of 
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the regular cases being limits of the composite solutions was thus conveyed. An educated guess 

on the behavior of the composite solutions near the extrema has been attempted as well . 

 

The paper based itself on the translation of the quantum mechanical double oscillator theory in the 

scalar fields theory and to this end it made extensive use of the models developed in both these 

sources. Reviews of major works such as Merzbacher’s quantum mechanics or the self-interacting 

scalar field sources by Consoli and Stevenson were included as being extremely relevant. 

 

In the end, the author hopes that the issue left open, namely the relation between the double oscillator 

field theory and the 4λφ  theory, will be answered in the near future and thus a further step in 

understanding quantum field theory would be undertaken. 
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