Classical Solutions to Double Oscillator Field Theory

Sebastian Buhai

Utrecht University College, Department of Sciences
Postbus 81-081, Postcode 3508 BB
Utrecht, The Netherlands

Email: sbuha @ucu.uu.nl

Honors Thesis Sciences* University College Utrecht, Spring-2001
Date: 18 May 2001

Supervisor: Dr. Frank Witte



Copyright and Authenticity Declaration

| hereby declare that the following thesis is the result of original, authentic, work by the
author in which al the relevant sources are properly sited and acknowledged. No sources,
equipment or materials other than those mentioned have been used. Where appropriate and
applicable, al institutions and/or person supplying funding or non-financial resources that

have been essential to the research presented here are acknowledged.

The materia published here has not been submitted el sewhere with the aim of receiving

credit towards a degree, or with the aim of publication prior to submitting this thesis.

| hereby transfer the copyrights to this thesis to the Science Department of University College
Utrecht in the understanding that University College Utrecht will always inform me prior to

re-publishing the material herein.

Name: Sebastian Buhai
Date and Place:18 May 2001, Utrecht



Contents

Abstraa

Chapter 1: Introduction

Chapter 2: Quantum mechanics of the doulle oscill ator

Chapter 3: The physics of the self-interacting scdar fields

Chapter 4: Simple solutions to the double-oscillator field theory
4.1.Regular charges for a doulde-oscillator field
4.2.‘Bubble solutions’ for adouble-oscillator field

Chapter 5: Compasite solutions to the double-oscil lator field theory
5.1. Extremum cases
5.2.Complex interaction cases

Chapter 6: Discussion and Conclusions

References and consulted material

Appendix



Abstract

The present paper aims at studying the physics of the double oscillator field theory from a classical,
non-perturbative perspective. In introducing the topic a short but to the point treatment of the physics
of the quantum mechanics double oscillator is presented. A subsequent section of the paper
summarizes the current state of research in the self-interacting scalar fields theory (with an emphasis
on the specific physical systems generating spontaneous symmetry breaking). We further discussin a
non-perturbative framework a few classes of solutions to the double oscillator field theory. The focus
ison analyzing the classes of upshots for the equation

0;p-D’p+m’p-m’adgn(¢p) = I(r)

where J(r) is a source of the form Q,d(") . We particularize this problem, looking at solutions of the

form @ =n(x) £ a. The classes of solutions are separately discussed in function of their complexity.

Several resultsin thisor in related damains are dso acknowledged and further applied where possible.
The paper introduces and leares open the issue concerning simil arity between the doule oscillator

field theory andthe A¢” theory.

1. Introduction

We will start this paper by recdling that when we guantize the harmonic oscillator the creaion
operator evolves in away that completely mimics the esolution d the classical solutions[6]. Thisis
a settled result in physics and daes nat need detailed argumentation. The essence of the proof liesin
the fact that Since coherent states are built from the vacuum by hitting it with exporentiated creation
operators, it's aso true that coherent states evolve in away which completely mimics the evolution of
the crrespording classical solutions. We @ntend that there is no reason to think that such an
argument would na apply aswell for the quantum field theory. Consequently it isworth trying to find

classicd solutions to the double oscillator field theory, for instance

Our target isto find classcal solutions to the dowble well oscillator field theory, leaving a discussion
open onthe similarity between this theory and the theory of the self-interacting scdar fields (Ago4).
To illugtrate this analogy, we will draw your attention to the explicit expression and kehavior of the
patentials in the case of the quantum medanics double oscillator on the one hand and the /\404 field

theory on the other hand. While in the first situation the potential will be of the form
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1 . . .
VDO=§m2(|(p|—a)2, in the latter case the potentidl  will have the  expression

Viied= % mzqo2 + %qo“ . The corresponding graphs of these potentials will look (for particular values

of the parameters, irrelevant as such for our purpose here) asfollows:
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We see immediately the similarity between these two plots, where the graph in the right is
representative for negative values of m? (m=2i in this example). The meding paint is the substantive
difference, where whil e the second of the potential functions is smooth enowgh (continuaus and first
order differentiable), the other one is just continuos but canna be differentiated, thus it is not in the

C* set of continuaus and at least once differentiable functions.

It has to be kept in mind that in the cae of positive values of m® for the second pot, we find
ourselves in the redm of the sef-interacting scdar fields where the symmetric vaauum is localy
stable, as we will investigate in detail in the sedion devoted to the andysis of the self-interacting
fields. The graphinthis“natural case” will have the following layout ( with m set to 0):
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Summing up the findings herein, on an intuitive basis we would state that relations between the 2

theories are expected (or in a more mathematical formulation, their likelihood of being similar is
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considerable). On the one hand, the double well field theory (based on the quantum mechanics

double oscillator in the last instance) will account for an exactly solvable model with spontaneous
symmetry breaking. On the other hand, the general A¢” field theory is usually being approached by

means of perturbation theory or other approximations'. Henceforth, a positive link between the two
theories would be more than welcome. We do not make a purpose out of discussing in depth this
issue, hereby limiting ourselves to classes of solutions for the double oscillator field theory. However,
itis clear that the connection would constitute an interesting and challenging sequel to this paper.

If we were to summarize the scope of this paper in a few words, based on similarities between the
models investigated we try to analyze specific instances within the physics of the phase-transition.
Such instances will be regular charges (the trivial solutions), but also bubbles around charges. In this

latter case the charges will act as condensation points around which the bubbles form, materializing
thus the connection between the A@*model with the double oscillator field theory model herein

introduced. In the quantum field terminology, we are looking, inter alia, to bound-states of indefinite
number of bosons, linked to such an interior charge (bubbles) or simply to the exterior, self-sustained,
regular charges. Hence the classical solutions to the double field oscillator are elements of key
importance in the phase transitions that can occur as soon as the potential has two minima (as spotted
in the plots above).

In the next two sections the similarities and differences between the 2 field theory models will
become more obvious, as a detailed analysis will be performed on each of them. The main chapters
following afterwards are directly addressing the classical solutions to the double oscillator field
theory.

2. Quantum mechanics of the double oscillator

Before starting our attempt to find classical solutions to the field theory double oscillator, a discussion
on the analogic situation of the quantum mechanics double oscillator is required. The similarity
between these objects will be hopefully as obvious to the reader as it was for the author. Although
considerable amount of literature has been written on the subject, it is still useful to recall the essential
aspects. In addition the treatment of the quantum mechanics double oscillator is particularly motivated

Y In the third chapter of this paper we will present such an approach dealing with the phase transition in 3+1
dimensional A¢" field theory
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when associated with particular phenomena. A concise treatment of the quantum double oscillator

following this rationale is done by Merzbacher in one of the most coherent quantum mechanics books

([1]), despiteits considerable age.

By studying the double oscillator we analyze a more complicated potential, essentially pieced together
from two harmonic oscillators. The edge of the discussion is to consider the question of boundary
conditions whose effects are observable from the discontinuities arising in the shape of this composite

potential.

To start with, most of the immediate applications of the double oscillator quantum theory come from
molecular physics. Merzbacher chooses the example of the motion in the neighborhood of a stable
equilibrium configuration, which can be approximated by a harmonic potential. Although one-
dimensional models are per se of limited utility here, important qualitative features can ill be
exhibited with such alinear model. We consider two masses u; and p, and constrain them to move in
a straight line, connected among each other by a spring whose force constant is k and the length at
equilibrium is a. If x; and X, are the coordinates of two designated mass points and p;, p. their
respective momenta, we know from classical mechanics that the non-relativistic two-body problem

can be separated into the trivial motion of the center of mass and an equivalent one-body motion,

Hi M,

Hy + H,

executed by a particle of mass u= having a coordinate Xx=x;-X, about afixed center under the

action of the dagtic force [1] . We will limit ourselves to the relative motion of the reduced mass .

The wave equation generated by the equivalent 1-body problem described above has the following
form:

LW _ 1 9p(xt)

P o += k(IXI B’ Y (xn (1)

We see immediately that if a=0 , equation (1) reduces to the wave ejuation for the simple linear
harmonic oscillator. When a# 0 we have “dmost” the ejuation of a harmonic oscillator whose

equili brium position hes been shifted by an amourt a, bu not quite that. We have an absolute value;
1
the potential energy in this case is VZEK(l x|—a)?. Such a potential can be eaily drawn with a

software tod such as Mathematica4.0. If we give the parameters particular values, we get the graphic
below (set k=0.5and a=4).
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From the figure we natice that we deal with two parabolic patentials correspondng (recdl the
badkground d this discussion) to the situation where the first particle is to the right of the second

particle (id et , x>0), respedively when the particles are in reverse order (id est x<0). The two
1
parabolas are joined at x=0 where the common pdential value is V(O)=Vo=§ka2. If we take a

moment to dscussan arealdy famed dff erence between the dassical and the quantum world, we @n
make the following observation: clasdcally, if the energy level E<V,, we can adualy assume that
only one of these potential wells is present, as no penetration of barrier is posdble; in quantum
mechanics, even if E<V,, the wave function may have afinite value & x=0, which measures the
probability that two particles are found in the same place (in other words the barrier can be

penetrated). Thisis nothing else but a specific instance of the EPR paradox.

Before explicitly solving the egquation of motionin this case, we assert some obvious observations as a
sequel of the remarks gated above. A symmetrical double well li ke the one we ded with in here will
have for energies that are way below the height of the barrier a correspondng pattern of “very nealy
degenerate pairs of states’ . The ground state with no nods sould definitely have aharmonic
oscillator ground state function win each well. Each of these ground state function should go
practicdly to 0in the midd e region where they med smocthly. If we think ahead of the first excited
state with one node we should have dmost the same energy as in the groundstate. The differenceis
that ead wave goes to 0in the midde region, hut actually crossng the ais, while meding smocthly
in the midde and thus producing the node”.

The explicit Schrodinger equation correspondng to the wave eguation (1) above ( not depending on
time) reads:

2t should be dea that in thisfirst excited state the wave function will have aharmonic oscill ator ground state
function {/ inoneside and -/ in the other side, so that they can crossthe ais.
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L (xia? w ()=
2 o +2k(IXI a Y (x)=EY () (9

For [x[>>a, equation (2) approaches the Schrodinger equation for the simple harmonic oscillator

2 2
- ;’_ ‘Z (é’ + % uw?x2P =Ey ; therefore the physically acceptable eigenfunctions must
U ox

be required to vanish as [x|—co.

Note that as a is varied from O to «, the potential changes from the limit of a single harmonic
oscillator well to the other limit of two separate oscill ator wells divided by an infinitely high and
broad pdentia wall (an observation also made aove, when trying to “guess’ the pattern of the

solution). Inthe simpler case we have nondegenerate energy eigenvalues[1]:

E=hw(n+ 1) = h\/E(n + 1) , wheren=0,1,2...
2 u 2

In the other extreme cae, when we think of two separate oscillator wells the energy values sl be
exactly like these ones above only that each of them will be dowbly degenerate since the system can
occupy an eigenstate of either one of the two wells. As the parameter a is varied, the energies and
eigenfunctions will change @ntinucusly between the 2 limiting cases. This is the adiabatic change of
the system [1]. Nonetheless, as the patentia is being distorted, certain fedures of the e@genfunctions
remain unaltered. An example of this srt of adiabatic invariants is the number of nodes of the
eigenfunctions. Indeed, given that one eigenfunction has n nades, it cannot change this number in its
transition from the patential in the extreme lower case to the extreme higher case. The proof of this
asertion is immediate and can be found in a very detailed description in [1], page 68. Extremely
interesting is the ansequence of this remark, namely that being an adiabatic invariant, the number of
nodes characterizes the eigenfunctions of the double oscillator for any value of a. A rigorous slution
for providing the eigenvalues and the eigenfunctions is introduced by splitting the cases for positive
and regative ordinates[1]. Thus, for positive x we introduce

=R 2y = PEO (¢ ) and ey + )
On° O On O 2

For negative x we have ailmost the same equation, with asmall difference in the substitution relation:

z’:Bélizk@x+a) :Mg(x+a)
Oh Onr O

By differentiating in bah cases we obtain the foll owing equations:
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0°¢ 1 Z . 0°¢ 1 z?
—+V+=—")p =0, respedivel - 0. It is plain as d
P ( > 4)¢ esp Y 55 > )¢ p ay

that for a=0 the 2 equations above become identical and we deal again with the harmonic oscillator.

The originality of the gproach in Merzbadher rests in the method employed for solving the
differential equation above. Certainly the incipient ideawould be to proceed with a detailed powver
series treatment. Merzbacher uses instead a parabolic cylinder function in order to find a particular
solution. Thisfunctionis defined as:

F(—) F(——) 2
— vi2 o ~(14) v.1l. 2’ 1-v §Z_
D.(@=2"e" Tl - )/2]1 1%2 22 %\/_ % Eerarirll

where | F, isthe onfluent hypergeometric function. The function is expandable in power series as

o @
follows: F, (@b;2)=1+— az M+ =z L

b1l bb+12 =0 K
As our purpose in this sction is more to outline the reasoning and the originality of the gproach

rather than describing the technical subtleties, we will keep to that, leaving the unsatisfied reader with

the possibility of consulting himself the further referencefor this sction. The underlying reasoning is

constructed as follows: if D, (z)is a solution of the discussed dfferential equation above than
immediately D, (—2) is a solution d the same ejuation and moreover these solutions are linearly
independent unless V is a honnegative integer. It follows that a double oscillator eigenfunction must
be propationa to D, (2) for positive values of x and proportiona to D, (—2) for negative values. It

remains to join these solutions at x=0, this being the point where the two parabadlic potentials med
with a discontinuaus slope. We investigate therefore the singularity of this paint. Since the

Schrodinger equation is a seand-order differential equation, ¢ and its first derivative must be
continuos. In ather words ¢ must belong to the C? class of functions with continuous first derivatives.
By extension, if X = X,isindeel a singularity point, we can integrate the Schrodinger equation from

X=X, —Et0 X=X, +&.Then

. I Xot€ 2”
Y +e)-gix-e)= [ -5V - Bl

Xg—€
The immediate mntention is that as long as V(x) is finite the equation above implies that ' is

continuaus acrossthe singularity. It follows that ( shoud also be mntinuous. We @n further assume
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that the eigenfunctions have definite parity, even or odd. If an even function of x has a continuous

slope at x=0, as the joining condtion requires, that dope must be 0. On the other hand from basic
analysis it follows that if an oddfunction of x is continuots at the origin, it must vanish there. Thus,
by matching

Y and ' at x=0 leads at the foll owing transcendental equationsfor V:

D,'(- 2IJT(Ua) =0,if ¢ isevenand

D, (- E%Qa):owunsmﬂ.

In generd it is difficult to cdculate the roots v of the equations above. Explicit formulas can be

obtained if V|, >> E for instance. The unnamalized eigenfunctions can be still written in function of

these above equations. Thus,
W(x) =D, ( 2’“‘7“’(x— a)) for x>=0and () = +D, (- ZuTw(X + ) for x<=0.

All in al, we have foll owed the Merzbadher’s reasoning in finding the eigenvalues and eigenvedors
of the quantum mechanics doule oscillator and attained a preliminary goal. In what follows we wil|
shift from the quantum mechanics to the quantum field theory world, dscussing the physics of the
self-interacting scalar fields.

3. Thephysicsof the self-interacting scalar fields

We depart in our analysis from the by now universally agreed fact that all particles in the Standard

Mode acquire their masses from a nonvanishing expedation value <@> of a self-interacting scalar

field and we follow the reasoning of Consoli and Stevenson in this respect[2]. The ideais considered

relatively simple and has already had a long-history behind; noretheless the nature of the phase

transitionin the A@* scdar field theory remains a hard task and must be given careful consideration.

Looking through the perspedive of the classical observer we only need to consider a potential of the

following form:

1 ., A 4
Va(@)==m?p® +=
(@)=5m'e" +29
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If we vary the m? parameter, we can notice that the phase transition will actually occur at m? =0.

Indeed, a graph o that potential for m’=0 and A =1, with @ being varied from —10 to 10, for

instance, would look as follows .

04 fidd potertia

V(x)
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Obviously the ssaumption above can orly be satisfactory in the realm of the dassical physics. In the
quantum theory the question is more subtle. In particular, even if we know that the symmetric vacuum
islocaly stable if m?>0, we cannot be sure that this symmetric vaauum is necessarily globally stable.
In other words we need to ask ourselves whether the phase transition could actually be of afirst order

and hence occurring at some small, but positive m? [2].

The standard approximation methods for the quantum eff ective potential are not appropriate in this
situation [2]. It has been suggested that the Gaussian method povides a clue, producing a result in
agreement with the one-loop effective potential in 3+1 dmensions [2]. The basic idea alopted by
several authors is based onthe “triviality” of the continuum limit of A@*. The immediate implication

of this presumption would be that the effective quantum potential should be physicaly
indistinguishable from the dassicd potentia plus some “zero-point-energy” contribution o free field
form arising from fluctuations (which would also lead to the fact that all approximations using this

asumption are in the end equivalent). In a mathematical form the trivia potential would be:
1 1
Viv( (p):Vcl((p)+\7 Z E\/ k?+M 2((0) )

where M( @) denctes the mass of the shifted field h(x) =@(x)- @, in the presence of a badkgrourd
field @. After massrenormalization and subtraction of a cwnstant term [2], V(@) consists of (pz,
@*, and @* In @ terms. The very paint of this contention is that any detectable difference in this

model would imply interactions of the h(x) field. However, aswe aumed that the theory is ‘trivia’,
we ae not suppose to odbtain such interadions. Then it must be that there is an infinite class of

“triviality-compatible” approximations, all yielding the same result. Such approximations can be
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arbitrarily complex provided that they have a variationa structure, with the shifted field h(x)=

@(X)- @ having a propagator determined by solving a nonperturbative gap-equation. If the
approximation is “trivially compatible” [2], this propagator reduces to a free-field propagator in the

infinite-cutoff limit. In that limit all differences among these various approximations can be asorbed
into a redefinition d the parameter A (and this was our aim when working with the assumption of
‘triviality’), which makes no further difference when the effective potential is expressed in terms of
physicd renormalized quantities.

If we now return to the introduction of this topic and suppose that spontaneous symmetry breging
does indeed coexist with a physical mass m*=0 for the excitations of the symmetric phase, thase
excitations would adualy be red particles. These “phions’ will play the main role in the
reformulation of our initial question: how is it possble for the broken-symmetry vaauum, a
condensate with a non-zero density of phions, to have alower energy density than the ‘empty’ state

with nophions at al? The solution rests after Consoli and Stevenson in the fact that the phion-phion
(or A@*interadion) is not always repulsive, but there is also an induced interadion that is attractive.

Moreover it is seaured that as m=>0 the atradtion becomes  long range (-1/r), that it generates an
infrared-divergent scatering length. Following this rationale, the long-range attraction makes it
energetically favorable for the condensate to form spontaneoudly. And this constitutes nothing else
but a physical medhanism for spontaneous symmetry breeking.

Consoli and Stevenson b not stop here in their paper. It is contended furthermore that “even an
infinitesimal two-body interaction can induce a maaoscopic range of the grourd state if the vacuum

contains an infinite density of condensed phions’. Thisis consistent with the condensate density being
infinitein physical length urit [3]. Further using unitswith 7z = ¢ = 1and the single-comporent }\(p4
theory with a discrete refledion symmetry, ¢ — —@, which is consistent with our approximations,

the inter-particle potential between the phions is discussd. An estimate of the energy density of a
phion condensate is subsequently achieved in an intuitive way. The research paper concludes with a
sedion on the phases transition resulted from the field-theoretic efective potential, including a
discussion onhow this effective potential can be written in a finite form in terms of the renormali zed
field. We will re-assrt herein the results concerning the inter-particle potential and the implications
onthe phase transition.

Consoli and Stevenson notice that the inter-particle potential is esentialy given by the sum of a so-

cdled “repulsive wre”, 6@ (r), and an “attractive part , _—31 that is eventually cut off exponentially
r
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, 1 . : . .
a distances grater than o As an exact expression of this long-range attractive potential
m

_ A2 1
o) = mgE? 5
A very important result of this long-range interaction resides in the expression of the ground state

the following has been found: V,

energy density for a large number of phions (N) in a large box of volume V with a fixed density
n=N/V. The way this ground energy density is reduced follows from the assumption of considering n
low enough so that the rest-masses Nm and the 2-body interaction energies form aone the tota
energy in the ground state’. In other words the contention above can be reformulated as

Eo = Nm+%N2U, where Uis the average potential energy between a pair of phions:

1
U= VId3rV(r) . Provided that mis very small, we might have that even though the empty stateis

locally stable, it might decay by spontaneously generating particles so as to fill the box with a dilute
condensate of a non-zero density. We find extremely relevant the trandation of the particle density

into field theory (n = % mqo2 ). The energy density as a function of n becomes then the field theoretic

effective potential®. The result is embedded in the following expression:

A AN P ()
32 256n° R

1
Ver () = 5 mg” +

Consoli and Stevenson actually prove the expression of the efficient potential (derived above on an
intuitive basis) by using arelativistic version of the original Lee-Huang-Y ang analysis of the Bose-

Einstein condensation of anon-ideal gas[2]. We will not insist on this rather technical approach and
will further focus on the discussion of the phase transition. V, (¢) is found to have an important
qualitative difference when compared to the classical potential. Thisis extremely interesting as the
present paper focuses on classical solutions to the double oscillator field theory and prepares the

ground for further comparison between the quantum mechanics and quantum field theories on the one
hand and the classical approach, on the other hand. Concretely, the classical potential has a double-

well form only for negative m* values and has a phase transition of second order at the value m?=0.

3 Although not every researcher would agree, the basis of the assumption here is that the gas of phionsisdilute
and therefore effects from three-body or multi-body interactions will be negligible
* The energy density as afunction of n can be found by setting E=m since almost all phions have k=0. Hence
_ , An® A%n® _dr
Consoli and Stevenson obtain the result: € = nm+ >~ CI) J'—
8m~ 64m'm°J r
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With V., (¢) onthe other hand, the phase transition accursat m* = m;, where

2 2
m02 = /\—2\/_0 > m2 .
1287° Je
Theresulting form of the effective potential and the value & which the symmetry is broken are
imminent ina“trivial” theory such as the one enployed by Consoli and Stevenson. However, despite

thistriviality, arich hierarchy of length scalesisfourd to emerge. Thishierarchy is perfectly

summarizedin[2].

An interesting discussion on the renormali zed form of the effedive paotential is conducted in the last

-1/2

sedion d the Consoli-Stevenson paper. Using arenormalized field ¢, = Z,, ~ "¢ (for theoretical

badkground ore can consult [10]) , where Z ,isare-scding fador, the eff ective potentia can be

2
h

2,2 °
8mvy

written in amanifestly finite form. A finite parameter ¢ isdefined ahead in thisresped: ¢ =

Impasing the necessary boundary conditions we find as final form of V, the following:

2
Vo () = 86 6 ~ Dk 2V - ¢8) + T gl (n 2=

R

We @n see immediately that in the extreme cae ¢ — Owe actually deal with the dassical potential

result. It is computed that the symmetry-breaking phase transition occurs at ¢ = 2 (which corresponds
to the value m? = mc2 ). What was achieved by renormali zationis in fact an intrinsic parameterization
of the effective potential by the two independent quantities ¢ and vé (the vacuum expectation value).

They replacethe two bare parameters m?and A of the original Hamiltonian. As afinal observation, it

isinteresting (also for the purpose of this paper) to dscussthe range 1> ¢ >0 which correspondsto

negative valuesof m?. Thisisthe range of the so-cal ed tachionic phions. A graph for the case m?<0
has been introduced in the introduction chapter when investigating in afirst-analysis perspective the

correlation between the A¢* theory and the double oscillator field theory.

In this chapter we have thus analyzed the sdlf-interacting field theory around its symmetry bre&king
values. However we did not question aurselves yet how sensitive would this phase-transition be in the
presence of sources of the scdar fidld. A traditional concrete examplein this sense isthe much
discussed e ectroweak model where these sources are materialized in quarks or leptons. In the next
sedionwe introduce asimilar self-standing model, the doulde oscill ator field theory model. It was
arealy adknowledged in the previous paragraphs that phase-transitions usually lead to discontinuities.
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We will i nvestigate whether an intermediate stage  in this phase-transitions and subsequently, a well

behaved model to acourt for these discontinuities, can be anstituted by classical scdar field
sources, namely solutions to the double oscillator field model. In this paper we investigate simple as

well as compasite solutions in the ream of the field theory doule oscillator.

4. Simple solutionsto the double oscillator field theory

After an in-depth discussion of the quantum double oscillator and the A@* field theory, painting out

necessary similarities and differences, we shall aim at finding exact solutions to the double oscillator
field theory. We first investigate the existence of the simple solutions, that is regular charges (the

almost trivial case) and the regular bubble solutions, in other words the solutions corresponding to the

phase transitionsin the A@*theory discussd above.

Before getting more wncrete, we ought to clarify the pragmatics of our research. It shoud be by now
clear what the use of the classicd solutions can be in this stuation. Firstly, the classical solutions
(with spedal emphasis onthe bulble solutions) are related to N-bason production amplit udes; to state
it otherwise, we ae testing herein whether we eventually ded with “bubbles of bosons’, that is
whether we deal with bowund-states of a huge number of bosons, condensed around a charge [ 8] . What
exactly are these bubles? Probably a perfect definition cannat be found, nonetheless they can be
described as quantized droplets of a different vaauum phase, which at the same time ae non-
perturbative resonant states of the field investigated [ 7], [8] . Secondy, these dassical solutions play a
very important role a intermediate products in the phase-transitions in general and, as a definite
application, in the ealy universe. The msmologicd badkground represents a callenging research
ground in this sense [6] . In the light of all these reasons, we find ourselves very motivated in
asessng the eistence of this sort of solutions. As an additional observation, the fact that non-

perturbative means are employed is again a potential improvement to usual approaches.

Let us firgt introducethe following equation d motion (equation that will play the guiding role in our
further calculations):

Eqm(¢ )=0;¢ - D’p+m’p-m’adgn(p) = I(r) (*),
where J(r) is a source of the form Q,0(") that enables this motion. In what follows we discussin

consecutive subsections the regular charges, respectively the regular bulble solutions to this equation.
We have some cmmon provisions that will apply to bah subsedions. Firstly, we use a spherica
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coordinate system, as intuitively it is more than clear that the dependence shall remain onr aone

for the simplest cases (applicationsin[1], [12]). Secondly, in order to simplify the understanding and
the mnsequent computations, we denote solutions to the equation of motion above by® {{ sign of
charge; sign o vaauum};, and {{ sign of charge, sign o vaauum}} .. Then we can immediately
identify which cases will correspond to possble regular charges and which correspond to regular

bubHle solutions (same sign o charge and vaauum means a single charge solution).

Asfar asregular charges are cncerned we will have the cases:

/\+ :{(+!+)l(+l+)} ) respectlvely A :{( _l_)l(_!_)}
Logicdly, it follows that the regular bubbles are:

=, = {( +l+)! (+!_)}

= ={(=) (=)}
= ={(+).(+4)}
= :{( _l+)!(_l_)}

It shodd be dea from the reasoning above that these ae the only possble configurations having a
single bubble wall (that is, they contribute as “simple” solutions to the total solution space)

Thirdly, we particularize the problem in that we search for solutions generated by sources of the

particular form @ =n(X) £ a. We mntend that generality lossdoes nat necessarily happen as result

of impaosing such arestriction, as the anclusions drawn in the end are again subject to generali zation.

4.1. Regular charge solutions

In order to separate the two charge solutions we introduce apositive test charge Qo. Subsequently our
regular charges will be of the form:

© +a, respectively A_(r) =Q, ©
mr

mr

/\+(r) = QO

—a (the Yukawa expression is in agreement

with the restriction onthe source@ =1(X) £ a imposed above, being also a standard form used in this
sort of computations)

All that remained to do is substitute these solutions in the equation d motion expased above and
chedk that we are indeed dealing with “regular charges’, that is charges in a vacuum of equal

® The notation herein hes been inherited from the previous notes on the subjea, of Dr. Frank Witte
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signature. In oder to be &le to assess the correctness of these solutions, we will use a

gualitative interpretation, dotting them:

Positive charge in positive vacuum Negative charge in negative vacuum
14} ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘
12 -2
10 -4
8 -6
6 -8
4 -10
2 -12
0 -14
0 2 4 6 8 10 0 2 4 6 8 10

We noticethat the representationisin conformity with our assumption, hence we can conclude that
the groundstate with a certain sign supports Y ukawa charges with an equal sign. It needs to be noted
however that herein we do na take into discusgon time-dependent solutions, thus making atrivia
asumption d the vacuum condensate being time independent. Nonethelesswe can safely contend

that regular charges of the given form are indeed solutions to the double oscill ator field theory.

4.2.Regular ‘bubble’ solutions

If the regular charges olutions were goproaching triviality, in the cae of the regular bubbles we ae
faced with a mnsiderable heavier task. We start using the same intuitive reasoning trying to “guess’
the form of these second-class solutions. Getting bad to the badkground d our research, we recall
that we talk about symmetry breeking in a field theory. As it was brought forward in preceding
paragraphs, this symmetry breeking arises possibly in the form of discontinuities. If we match a
charge into a vaauum of a different sign, there will definitely be adiscontinuous jump in the second
space derivative of the field. However, not all these cases are necessarily consistent with the model

and that requires careful investigation.

Essentially, the bubble solutions could exist where the potential of the double field oscillator has two
minima. Locdity does nat play arole here, the minima being absolute in the cae of the double field

oscillator®.

® Thisis taken in contrast with the self-interading field theory, where Consoli and Stevenson clealy contend a
guestionable single minimum, at leest in the first place Seethe rresponding chapter above or refer to the
paper by the mentioned authors ([2])
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We use ayain a test charge Q as a dtrictly positive @nstant and we define the paossible types of
“bubles’ in function of this test charge. We use the following framework solutions (which will

constitute substantial solutions once the vaauum val ue has been accounted for):

®, (r)= g(cle‘mr +c,e™), while
mr

cDout (r) = ge_mr
mr

where the two equations stand for the inside, respectively for the outside solutions within the field.

It is clear that the bubble wall is located where the effective potential becomes 0 and where the
vaauum is behaving “unraturally”. In this chapter we solely consider single charges in our system,
thus the bulbles will depend orly onthe radiusr generated by these point charges.

In function d the inside/outside solutions above, we can define the bubbles. I1t's smply logicd that
we can only have four kinds of them. They bare the same framework form in terms of exterior and

—mr

e

interior solutions. Namely in bah cases the Y ukawa patentia [ 3], [12], isdecisive (asone @n

readily noticein the framework solutions above), the vacuum value a making the diff erence (as being
added or subtracted, respectively). The possble caes are the following:

=.(nN=9, (r)+a,ifr<Rand =, (r) =d_,(r)—-a,if >R

= (r)=-9,,(r)-a,ifr<Rand =_(r) =-d_,(r) +a,if >R

='r)=d, (r)-a,ifr<Rand =" (r) =d_, (r) +a,if >R

=(r)=-d, (r)+a,ifr<Rand =" (r) =-P_,(r)—a,if R,

where R isthe radius of the bubHe.

Let ustake acloser look to ead of these solutions.

For the first type of bubde solutions, =, (r), the outcome is the foll owing.

Cheding the values for the @efficients ¢; and ¢, and consequently computing the field, we find that

R is restricted as a function d the darge to vaauum parameter z:g. We dso ned to have,
a
following the aonditions for the interior of the bulble, that e Q_ a <0, which puts an ugper limit
mr

onthe radius. Subsequently, if the value for r drops below this limit the outer field will no longer be a
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solution to the equations of motion. The maximum radius is thusfound as a limit solution

to the equation above. A qualitative interpretation of the maximum radius in function of the charge-

to-vacuum ration has been plotted below:
Mxinum radius of bubde

20 40 60 . 8 100
charge -to-vacum raio: z

We see in a clear way the dependence between the maximum radius of the bubble and the charge-to-

vacuum ratio. By analogy to the previous chapter on self-interacting scalar fields, this charge-to-
vacuum ratio obvioudy plays the role of vé, the so-called vacuum expectation value. An increased

ratio would increase the radius in inverse mass units.

As the properties of this bubble strictly depend on the charge/vacuum parameter, we are definitely
interested in its qualitative behavior for certain values of this parameter. A plot for a few values is

presented below:
Bibble 1 in the vacuum

©
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520"
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Hereinabove the considered values of z were 1072, 10, 10°, 10', 10%
The graph is speaking for itself: the bubble here is represented by a positive charge in a negative
vacuum. Or thiswastheinitial contention when we departed in analyzing this type of bubbles.

In the light of the foregoing, we note that the existence of the bubble is not questionable (the bubble
behaves as a positive charge in a negative vacuum) and moreover we are reminded again that the
bubble wall is aways located at the null point of the field.
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Further we need to check the second possible type of bubble solutions, =_(r) . Reasoning in a similar

way as in the paragraphs above, we get again a restriction on the range of values for R, the parameter
being again the charge-to-vacuum one. On the other hand, checking for the exterior boundary, we get
the same condition as in the case of the first type of bubble solution. We can thus directly investigate
the qualitative behavior (imposing the same charge-to-vacuum parameter values as in the preceding
section):

Bibble 2 in the vacuum

o

i

888888

solution in units of a

0 0.5 o1 15 2
rinilm

From the graph above it is more than clear that the secondtype of buble solution is representative for
bubles behaving as negative charges in a positive vaauum, in ather words the oppdasite of what we
obtained in the cae of the first type of bulbles (they are simply symmetric states in terms of the
framework solutions)

We arived at the case of the butble solutions =" (r) , with the bubble wall appeaing in the |eft side

of the conventiona notation. We follow the same steps as in testing the preceding cases. R will till
depend on the charge- to- vaauum parameter but this time in a different manner than we had before. A
straightforward computation indicates that R is actualy a strictly monaonaus function of the charge-
to-vaauum parameter’. It is worth nding that checking the existence of the bubble from the outside
we obtain an identity, hence the bubble wuld in principle exist in the field, but nonetheless, as
previoudy proved, it would not be sustained from the interior. And for a bublde to exist the
combination ketween the exterior and interior condition has to be fulfilled. Thus bubtes of this type

do nd exist as proper solutions to the ansidered equation d motion.

" The mere thing we ae required to do hereisto study the zro’s of the function: -

e R(Ee®(-1+R) +e” (1+R) +ef2) _ o o _
1+ . We obtain that thisis monotonicaly increasing and has no
r

Zeros.
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We would aready reason by means of symmetry in the ase of the last type of bukble. Evaluating

the conditions, we find that the same interior equation dces not have any solutions in that interval.
However, from an “outdoor” perspective, the field would allow this buble to exist as the condition

for the exterior of the bubble is always stisfied.

We observe that in the last two cases no match of the interior to the exterior solutionsis neaded, since

for al values, the interior condtion cannot be fulfilled. Thusthis gep is superfluous.

In conclusion we mntend that as far as regular bubbles are wncerned, id est charges in vacauums of
different signs (with single bubde wall), we can have two pcssible ases, namely

E+ :{( +l+)!(+!_)} and
= :{( _l_)l(_l+)} .

Therefore the set of solutions to the double oscillator field theory comprises © far regular charges and

single wall bubbles, where the latter can exist only in the first two instances.

So far we have ignored the posgbility of a second charge in ou system ; we have discussed only the
simple solutions to the double oscillator field theory where the upshot could be simply regular charges
(or charges in vaauum of the same signature) or regular bubbles (charges in vaauum of different
signature). These regular bubldes were all sphericd and had symmetry properties, as they were
condensed arounda single point charge. What happens however when a second charge is added? How
does the physics of the field modify? What will be the location of the bulble wall in this case? Wetry
to come with meaningful answersto these questionsin the next chapter.

5. Composite solutionsto the double oscillator field theory

In so far we have treaed ony regular solutions to the doule field oscillator field theory, namely
regular charges and regular bubbles. As aready introduced in the preceding chapter, should we
consider a second charge, the spherical symmetry of the bubdes will intuitively be disturbed. We will
thus have to incorporate in ou total set of solutions $ cdled composite solutions. We can think of at
least three @tegory of phenomena interesting to be studied in this respect: interactions between
bubHles and regular charges, interactions between bubbles as sich and dipdle solutions. The ‘ moment
generating function’ of all these phenomena will be the structure formed hy the 2 charges considered,

with focus on their separation distance. In what follows we will study the extremum cases (charges



23
superposed o very close, respectively charges situated extremely far away from ead ather) and

then we will get to the more difficult case of studying the charader of the solution in function of their

“separation” distance parameter.

Given that the doube oscillator theory is in esence alinear theory (linearity is preserved when
transiting from quantum medhanics to quantum field theory), the patentials might be in principle
superposed. We emphasize “in principle’ as we need to be extra caeful where the total sum of the
potential becomes 0 and where subsequently we need to fit the interior to the exterior solution®. It is
very likely that in the realm of the compaosite solutions, the interior solution will depend on more than
just r, hence aspherical coordinate system is nat appropriate when studying the behavior of the doube
oscillator field theory herein. Instead, we will try to solve the system in a g/lindrical fitting. We
expect rotational symmetry around the dharges axis. In what follows we investigate this types of
solutions focusing on the behavior of the exterior solution, as we ae interested in the existence of
these bulblesfirst of all from thefield perspective.

5.1. Extremum cases

The equations that we will use for the exterior, respectively the interior solution, are of course based
on the crresponding equations for the spherical bubbles case, with the exception that this time the
buble will aso depend a the z parameter (as we exped rotational symmetry aroundthe z axis). We

will herein consider the exterior solution, in order to inspect if the bubble aould at all exist :

—myr2+22 -myr?+(z-k)?
o .(r,2)=-a+Q e—+Qe—
out \" 7 1 /—r2+22 2 (—r2+(z—k)2 ’

where k isthe separation parameter between the two charges (we assume of course that k<<R).

Before analyzing the exterior potential in more detail, we make the remark that the interior solution
will aso be constructed on the Yukawa patentia, hence it is build on a similar framework as the
interior solution for the regular charges; finding nonperturbatively this lution is more than causing
trouble, hence we will assume for the moment that the ecistence of this slution is not questionable

and thus we can investigate the overall solution by pinpointing to the exterior one.

We start by looking closer to the cases where the separation parameter between the existing and the

incoming charge ae 0, respectively oo. This cases are easy to treat and the results will reduce to
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simple solutions of the doude oscillator field theory. We notice that for k=c0 the second term

completely vanishes and we have to deal with a single charge in a bubble, or in aher words with an
upshot described as a bubble cndensed arourd this charge. This type of solution was aready
analyzed in the previous sedion, the solution here being thus of a similar pattern. Taking k=0 we
naticethat the two charges smply add up(superposition d patentials). Hencewe have the same case
as previoudy, with the observation that if the charges are opposite, in an obvious way they will cancel

ead other. We will henceforth investigate these two cases altogether.

If we ae to plot the evolution of the radius in function d z for the caes where the separation
parameter is o, respectively 0, we will be surprised to ndice that they behave dmost identicaly
(ignoring the scde difference, of course). Andthisis after all asimplelogical consequence of the fact
that superposed charges or charges at an infinity distance will “produce” a bubbe with similar
features, namely a bublde condensed aroundthe charge taken as reference.

Mxinum radius for infinite separation Mxinum radius for zero separation
0.3} 0.5¢}
025} 0.4}
x 02 xr 03¢
0.15 ¢}
0.2}
0.1¢
0.05 ¢ 0.1+
0 005 01 015 02 02 03 035 0 01 02 03 04 05
z z

We can seethe similarities in the plots above, where the parameters were dl set equal to wnity, for
simplicity®. What we dso noticeis that the radius has exactly the same pattern as we discovered with
regard to the regular bubbles; this is again simply following from the fact that extreme caes bail
down to simple solutions. Let uslook for amoment at the expression of the radius in function of the z
coordinate for the caes k=0 andrespedively k= . We have

| 2 ProductLog MA@ |2
r-

m , for k=0 and

\/_rr222+Product Log| %}2
r-

m ,for k=00,

In both expressions above, ProductLog(x) gives the principal solution for u in the equation x= ue".

8 We have insisted already in matching the solutionsin the preceding sections, when treating the simple
solutions to the double oscillator field theory. Hence no supplementary explanation is given here.
° In general of course R will be represented in units 1/m, but as we set here m=1 we can ignore them
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We clearly observe now the relation between these 2 extreme cases. We also see that by setting

all parameters equal to unity (implying that we work with unity charges as well), the effect of the
second charge in the case k=0 falls from contributing in a significant manner and hence the almost

identity in the 2 plots.

We expect the behavior of the exterior solution to copy more or less the pattern of the one in the
regular charges. Of course there will be some noise added because of the additional charge. We leave
to the ambitious reader the task of manipulating the equation and find the framework solution (we
suggest the use of the Mathematica family software as the computations are otherwise an impossible
task). Hereinafter we reproduce the plot of the exterior solution functions for the extreme cases using
the same values for the parameters (m=1, Q,=1, Q,=1, a=2).

Separation  paraneter k=0 Separation  peraneter  k=Infinity
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L -3x10° 12
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-4x10° 12
0 20 0 60 0 100 0 20 20 60 & 100

There is without any doult more to discuss about extreme situations, however a much more
interesting and challenging task is to see what happens while we vary the separation parameter

between the 2 charges of our system. The next section gves an overview on this aspect.

5.2. Complex interaction cases

To our disappdantment solutions to the case of complex interactions were not found with the same
precision as before. While non-perturbative methods applied in an analytical framework failed to give
any desired results, numerica methods did nd perform better, achieving results only for the limiting
cases discussed above. In ather words, once we start the discussion onthe amplex cases where the
separation parameter is not 0 or oo, traditional numerical methods such as Newton’s or the secat
method, fail.

However, given that more than satisfadory results were obtained as far as smple solutions are
concerned, we can try to reason onthe complex situation wsing the heuristics provided therein. It is

plain as day that the simple solutions can be taken as li mits to the complex cases. Expanding on this
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idea, if we consider close solutions to the limiting cases discussed in 5.1 we can try to use the same

estimate for the radius, modifying solely the value of the separation parameter. In this spirit, let us
consider the case were the separation parameter would be unity. We plot the exterior solution in what

follows; we use the same reference value of the radius as for the limiting case k=0.
Separation  paraneter k=1

O P N W b~ OO

We natice the difference from the limiting case. Due to the fact that the choice of the parameters has
to be extremely caeful in order to get a meaningful plot, we can say that the graph might not
reproduce aperfect situation; moreover we have the solutionin terms of z, hence we cannot compare
it diredly to the similar solution within the regular bubble realm. Nevertheless, we can ‘guess that
the bubble will become an ellipsoid rather then a sphere and with increasing separation parameter will
lose more and more of its unity until i n the end will become two separate parts, or apure dipde.

We leave the further investigations of these aases to a sequel of this paper and in what follows we try
to present the conclusions to ou research, nd before discussng the gplication badkground and d

course, theissue mncerning the stability of the bulbles.

6. Discussion and Conclusions.

We have analyzed in this paper the types of classical solutions to the double oscil lator field theory. A
discussion onthe importance of the classes of solutions in the @ntext of the quantum field theory has
not been dane yet, however. We shal not lease such an important issie uncovered and shall treat in
what follows the badkground d this research.

According to the standard model and to its extensions, symmetry bresing phase transitions are
expected to have occurred on a masdve scde in the erly universe. It is a known fact that the
mechanism by which these transitions can happen can be spinodal decompasition[7] or the formation

of the bubbes of the new phase of the universe with the old ore. Or this is the most amazing
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application d our bubble solutions, largely discused in this paper. The vaauum stages

separated by the bulble wall herein are nothing but the ealy universe and the adua universe. It is
true that the bubble theory is commonly accepted especialy as far asthe dectroweak phase transition
is concerned, while the spinodd decomposition is favored otherwise; nevertheless the generating
mechanism is interesting to study for all cases. To finish ou ideaabout the formation of the universe,
the phase transition bulble will expand and collide with ead aher until the whole volume is

occupied™®, at which time the transition early universe> actual universe is considered fulfilled.

Ancther isaue that was not brought in for discussion bu certainly has its scientific merits is the
stability of the bubble solutions to the doule oscillator field theory. Configurations of the regular
bubHle type investigated by usin the section dedicated to the simple solutions of the doulde oscil lator
field theory were studied some time ajo by N.A. Voronov and I. Y. Kobzarev and their results were
re-asserted in severa contemporary papers[8]. In particular it was found that these configurations are
reasonably long lived™, namely that these kind of bubbles undergo several pulsations of their radius
before decaying into ougoing waves, for instance Hence, the anfigurations found by us as posshble
regular bubbles lutions,

= = {(wH) () and = ={(=), (=)},

are likely to be “reasonably stable’. We canot say of course too much in this respect as far as the
composite solutions are concerned, as no exact identification of them could be produced by using the
classicd techniques. Nevertheless we do expect approximately the same reasonable stability as the

composite character would na influencethe undergoing of radius pulsations before decy.

We have investigated in this paper classical solutions to the doule oscill ator field theory, using non
perturbative methods. Simple solutions to this theory were successfully found. They are regular

charge solutions and regular butble solutions of the form =, ={(+,+),(+,—-)}and

=_={(-,9), (=)} . It was at the same time proved that second type of regular bulble solutions (of

—+

the form =" ={(+,-),(+,+)}and =~ ={(—,+),(-,—)}) do not exist as proper solutions to the
doule oscillator field theory, even if from a sole eterior point of view their existence is nat
precluded. We have further investigated complex solutionsto the field theory analyzing them from the
exterior perspective. We found the limiting cases for zero separation between the test charges,

respedively infinite separation between the charges, as the analogues of the regular cases. The idea of

9 The nucleaion of the bubbles[5], [6] takes placebefore their per se expansion, but this phenomena s beyond
the purpaose of the present paper

M The Russian team working on this reseach employed a numerica study of the dasscd evolution of the field
of the bubble-type configuration and has reveded that in the long run the bubbles will emit alarge portion of
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the regular cases being limits of the composite solutions was thus conveyed. An educated guess

onthe behavior of the cmmpasite solutions nea the extrema has been attempted as well .

The paper based itself on the trandation of the quantum mechanicd double oscillator theory in the
scdar fields theory and to this end it made extensive use of the models developed in bah these
sources. Reviews of major works such as Merzbadher’s quantum mechanics or the self-interacting

scdar field sources by Consoli and Stevenson were included as being extremely relevant.

In the end, the aithor hopes that the issue left open, namely the relation between the double oscillator
fidd theory and the A@* theory, will be axswered in the nea future and thus a further step in
understanding quantum field theory would be undertaken.
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