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Chapter 4  
Inflation and Interest Rates in the 
Consumption-Savings Framework 
 

 
The lifetime budget constraint (LBC) from the two-period consumption-savings model is 
a useful vehicle for introducing and analyzing the important macroeconomic relationships 
between inflation, nominal interest rates, real interest rates, savings, and debt.  Before 
doing so, we present definitions of these terms and a basic relationship among them. 
 
 

The Fisher Equation 
 
Inflation is a general rise in an economy’s price level over time.  Formally, an economy’s 
rate of inflation is defined as the percentage increase in the price level from one period of 
time to another period of time.  In any period t , the inflation rate relative to period 1t   
is defined as 
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where   denotes the inflation rate.32  As a matter of terminology, a deflation (negative 
inflation) occurs when  < 0, and a disinflation occurs when  decreases over time (but 
is still positive at every point in time).  For example, if in four consecutive years, 
inflation was 20%, 15%, 10%, and 5%, we say that disinflation is occurring – even 
though the price level increased in each of the four years. 
 
In our consideration of the consumption-savings model, we defined the nominal interest 
rate as the return on each dollar kept in a bank account from one period to the next.  For 
example, if your savings account (in which you keep dollars) pays you $3 per year for 
every $100 you have on balance, the nominal interest rate on your savings account is 
three percent. 
 
Because of inflation, however, a dollar right now is not the same thing as a dollar one 
year from now because a dollar one year from now will buy you less (generally) than a 
dollar right now.  That is, the purchasing power of a dollar changes over time due to 
inflation.  Because it is goods (i.e., consumption) that individuals ultimately care about 
and not the dollars in their pockets or bank accounts, it is extremely useful to define 
another kind of interest rate, the real interest rate.  A real interest rate is a return that 
is measured in terms of goods rather than in terms of dollars.  Understanding the 

                                                 
32 Not to be confused with profits, which is what π often represents in microeconomics.  The usage is 
almost always clear from the context. 
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difference between a nominal interest rate and a real interest rate is important.  An 
example will help illustrate the issue. 
 
 

 
Example: 
Consider an economy in which there is only one good – macroeconomics textbooks, say.  
In the year 2012, the price of a textbook is $100.  Wishing to purchase 5 textbooks 
(because macroeconomics texts are so much fun to read), but having no money with 
which to buy them, you borrow $500 from a bank.  The terms of the loan contract are that 
you must pay back the principal plus 10% interest in one year – in other words, you must 
pay back $550 in one year.  After one year has passed, you repay the bank $550.  If there 
has been zero inflation during the intervening one year, then the purchasing power of that 
$550 is 5.5 textbooks, because the price of one textbook is still $100.  Rather than 
thinking about the loan and repayment in terms of dollars, however, we can think about it 
in terms of real goods (textbooks).  In 2012, you borrowed 5 textbooks (what $500 in 
2012 could be used to purchase) and in 2013, you paid back 5.5 textbooks (what $550 in 
2013 could be used to purchase).  Thus, in terms of textbooks, you paid back 10% more 
than you borrowed. 
 
However, consider the situation if there had been inflation during the course of the 
intervening year.  Say in the year 2013 that the price of a textbook had risen to $110, 
meaning that there had been 10% inflation during the year.  In this case, the $550 
repayment can be used to purchase only 5 textbooks, rather than 5.5 textbooks.  So we 
can think about this case as if you had borrowed 5 textbooks and repaid 5 textbooks – 
that is, you did not pay back any additional textbooks, even though you repaid more 
dollars than you had borrowed. 

 
 
In the zero-inflation case in the above example, the nominal interest rate is 10% and the 
real interest rate is 10%.  In the 10%-inflation case, however, the nominal interest rate 
was still 10% but the real interest rate (the extra textbooks you had to pay back) was zero 
percent.  This relationship between the nominal interest rate, the real interest rate, and the 
inflation rate is captured by the Fisher equation, 
 
 t t tr i    (15) 

 
where r  is the real interest rate, i  is the nominal interest rate, and   is the inflation rate.  
Although almost all interest rates in economic transactions are specified in nominal 
terms, we will see that it is actually the real interest rate that determines much of 
macroeconomic activity. 
 
Actually, however, the Fisher equation as stated in expression (15) is a bit of a 
simplification.  The exact Fisher equation is 
 
 (1 ) (1 )(1 )t t ti r     , (16) 
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the details of which we will not describe here.  This more accurate form of the Fisher 
equation turns out to be more convenient than its simplification in thinking about our 
two-period consumption-savings model.  Before we analyze the topics of inflation, 
nominal interest rates, and real interest rates in the consumption-savings model, let’s 
quickly see why expression (15) is in fact an approximation of expression (16).  
Multiplying out the terms on the right-hand-side of expression (16), we get 
 
 1 1t t t t ti r r      . (17) 

 
If both r  and   are small, which they usually are in developed economies (e.g., the U.S., 
Europe, Japan, etc.), then the term r  is very close to zero.  For example, if 0.02r   and 

0.02  , then 0.0004r  , which is essentially zero.  So we may as well ignore this 
term.  Dropping this term and then canceling the ones on both sides of expression (17) 
immediately yields the “casual” Fisher Equation of expression (15).  The simplified 
Fisher equation of (15) is useful for quick analysis, but for our consumption-savings 
model it will almost always be more useful to think in terms of the exact Fisher equation 
(16). 
 
For the two-period analysis below, the only economically meaningful inflation rate is that 
occurs between period 1 and period 2.  According to our definition of inflation above, the 
inflation rate between period 1 and period 2 is 
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So 2  measures the percentage change in the price level (here, the nominal price of the 
consumption basket) between period 1 and period 2.  For use below, it is helpful to re-
arrange expression (18).  First, separate the two terms on the right-hand side to get 
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next, add 1 to both sides, which gives  
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Finally, taking the inverses of both sides leads to 
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Consumption-Savings Model in Real Units 
 
Recall the nominal LBC of the two-period model, 
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where the notation is exactly as we have already developed.  Each term is in nominal 
units in this expression.  As shown in the diagram, we can recast the framework into 
purely real (goods-denominated) units and re-do the entire analysis.     
 
Dividing the nominal LBC by P1 is the first step in re-casting the analysis in real units: 
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The “labor income” terms 1Y  and 2Y  are nominal income.  Define real income in period 
1 and period 2, respectively, as  
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Notice now we have to be careful in distinguishing upper-case Y from lower-case y! 
 
Substituting y1 into the LBC gives  
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To substitute y2, observe that we can multiply and divide the second term on the right-
hand side by P2, which gives 
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(all we have done is multiply by “1,” which is always a valid mathematical operation).  
Now using the definition y2, we have  
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The definition of inflation allows us to replace the 2

1

P

P
  terms to obtain 
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Next, using the exact Fisher expression 
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, rewrite the LBC once again as 
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What’s left to deal with is the seemingly complicated term at the far right-hand side.  In 
terms of economics, it represents the nominal receipts from the A0 wealth with which 
the consumer began period 1, stated in terms of period-1 purchasing power, hence the 
appearance of P1 in the denominator.   
 
Using the same procedure as before, let’s multiply and divide this term by P0 (the 
nominal price level in period zero, or more generally stated, the nominal price level “in 
the past”), which gives us 
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Using the definition of inflation allows us to rewrite this as 
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Two steps remain.  First, invoke the exact Fisher relationship.  Second, define 0
0

0

a
A

P
   

as the real net wealth of the consumer at the very end of period 0 and hence, 
equivalently and as shown in the timeline, at the very start of period 1.  Finally, the LBC 
in real terms is  
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which is highly analogous to the LBC in nominal terms.  Indeed, the two describe the 
same exact budget restriction on consumer optimization. 
 
The real form of the LBC emphasizes that consumption (which is a real variable!  
Nobody eats dollar bills or sits down in front of a dollar bill to watch a baseball game!) 
decisions over time are ultimately dependent on real factors of the economy:  the real 
interest rate and real (“labor”) income.   
 
It is true that in modern economies with developed monetary exchange and financial 
markets, dollar prices and nominal interest rates are the objects people seem to think in 
terms of when making consumption and savings decisions.  This facet of reality is indeed 
why our analysis so far has been framed in nominal units 
 
But we can boil these dollar prices and nominal interest rates down to real interest rates 
and describe much of consumer theory solely in terms of real factors.   
 
None of this is to say, though, that consideration of currencies, dollar prices, and nominal 
interest rates are unimportant or uninteresting topics.  Indeed, the whole field of 
“monetary economics” is primarily concerned with these issues, and we will have a lot to 
say later about monetary economics.  Depending in which issues we are analyzing, we 
will use either the LBC in real terms or the LBC in nominal terms.  If we are considering 
issues of inflation, for example, then the nominal LBC will typically be more appropriate. 
 
We proceed now with the nominal LBC.  For diagrammatical purposes, it will be, just as 
before, easier to assume that 0 0a   (that is, the individual has no initial wealth). 

Rearranging the real LBC into the ready-to-be-graphed “slope-intercept” form, we have 
 
 2 1 1 2(1 ) (1 )c r c r y y      . (23) 
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Period 1 Period 2 

a0

Start of economic 
planning horizon 

End of economic
planning horizon

a1 a2

Receives real 
income y1

Receives real 
income y2

Receives real initial 
wealth a0, inclusive 
of interest income

Receives optimally-
chosen real wealth 

a1, inclusive of 
interest income

Individual optimally 
chooses real 

consumption c1 and 
optimally chooses 

level of real assets a1 
for beginning of next 

period  

Individual optimally 
chooses real 

consumption c2 and 
optimally chooses 

level of real assets a2 
for beginning of next 

period  

NOTE:  Economic 
planning occurs for 
the ENTIRE two 
periods. 

 

 

Figure 23.  Timing of events in two-period consumption-savings framework, stated in real units. 
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The utility function 1 2( , )u c c  is unaffected by all of these manipulations of the LBC, 
meaning the indifference map is unaffected – as it must be, since budget constraints and 
indifference curves are two completely independent concepts.   
 
Graphically, then, an example of an individual’s optimal choice is shown in Figure 24 
(which takes as given a0 = 0).  In this example, the individual consumes more than his 
real income in period 1, leading him to be in debt at the end of period 1; in period 2, he 
must repay the debt with interest and therefore consume less than his period-2 income.  
The definition of real private savings during the course of period 1 can be stated as  
 
 1 0 1 1

privs ra y c   ,  

 
which is quite analogous to one statement of nominal private savings during the course 
of period 1 (which, recall, was 1 0 1 1 1

privS ciA Y P     

  
 

c2
slope of LBC = 

-(1+r)

c1c1
*

c2
*

(1+r)y1 + y2

y1

y2

 
Figure 24.  The interaction of the individual’s LBC (here presented in real terms) and his preferences 
(represented by the indifference map) determine the individual’s optimal consumption over time, here c1* 
in period 1 and c2* in period 2.  The individual begins period 1 with a0 = 0. 
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The Aggregate Private Savings Function 
 
With the aid of Figure 24, we will now consider how changes in the real interest rate 
affect savings decisions of individuals.  In our two-period model, there is only one time 
that the individual actually makes a decision about saving/borrowing:  in period 1, when 
he must decide how of his period-1 labor income to save for period 2 or how much to 
borrow so that he can consume more than his period-1 labor income.  As such, what we 
are exactly interested in is how 1

privS  (the same notation as before – private savings in 
period 1) is affected by r .  Put more mathematically, what we are interested in is what 
the private savings function looks like. 
 
Let us begin by supposing that the initial situation is as shown in Figure 24, in which the 
individual is a debtor at the end of period 1.  Consider what happens to his optimal choice 
if the real interest rate r  rises, while his real labor income 1y  and 2y  both remain 
constant.  Such a rise in the real interest rate causes the LBC to both become steeper and 
have a higher vertical intercept, which we can see by analyzing the LBC (23).  In fact, 
the new LBC must still go through the point 1 2( , )y y  because that is still a possible 
consumption choice for the individual.  That is, regardless of what the real interest rate 
is, it is always possible for the individual to simply not borrow or save in period 1 and 
simply consume his real labor income in each period.  Because this is always possible, 
the point 1 2( , )y y  must always lie on the LBC.  Thus, the new LBC at the higher real 
interest rate is as shown in Figure 25.  Also shown in Figure 25 are the new optimal 
consumption choices of the individual at the new higher interest rate.  Specifically, notice 
that consumption in period 1 has decreased. 
 
Because labor income in period 1 is unchanged, this means that his savings in period 1 
has risen.  Recall that private savings in period 1 is 
 
 1 1 1 1

privS Y Pc   (24) 
 
in nominal terms.  We can divide this expression through by 1P  to get savings in real 
terms, 
 
 1 1 1

privs y c  , (25) 
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c2

initial LBC

c1c1
*

c2
*

y1

y2

new LBC

new 
c1

*
 

Figure 25.  If at the initial real interest rate the individual chose to be a debtor at the end of period 1, then a 
rise in the real interest rate necessarily lowers consumption in period 1, implying that savings during period 
1 has increased (or, equivalently, as shown, dissaving has decreased). 

 
 
Notice the distinction between lower-case 1

privs , which denotes real savings, and our 

earlier upper-case 1
privS , which denotes nominal savings.  The relationship is simply that 

1 1 1/priv privs S P .33   Thus, with unchanged 1y  and a decreased *
1c , 1

privs  has increased.  
Actually, in Figure 25, savings is still negative after the rise in the real interest rate – but 
it is less negative, so indeed private savings has increased. 
 
The preceding analysis seems to suggest that there is a positive relationship between the 
real interest rate and private savings.  However, the conclusion is not so straightforward 
because we need to consider a different possible initial situation.  Rather than the initial 
situation depicted in Figure 24, suppose instead that Figure 26 depicted the initial 
situation of the individual.  In Figure 26, the optimal choice of the individual is such that 

                                                 
33 By now, you should be noticing how to convert any nominal variable into its corresponding real variable 
– simply divide by the price level.  The one slight exception is the nominal interest rate – to convert to the 
real interest rate requires use of the inflation rate (which itself depends on price levels, so the idea is still 
the same). 
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he consumes less in period 1 than his labor income in period 1, allowing him to 
accumulate positive wealth for period 2.  That is, he saves during period 1. 
 

 

c2

y1

y2

(1+r)y1 + y2

c1
*

c2
*

 
Figure 26.  At the initial real interest rate, the individual’s optimal choice may be such that he is not a 
debtor at the end of period 1 but rather a saver.  This is because he chooses to consume less in period 1 than 
his labor income in period 1, which allows him to consume more in period 2 than his labor income in 
period 2. 

 
Now suppose the real interest rate rises, with labor income 1y  and 2y  both held constant.  

The budget line again becomes steeper by pivoting around the point 1 2( , )y y , as shown in 
both Figure 27 and Figure 28.  However, depending on the exact shapes of the 
individual’s indifference curves, the individual’s consumption in period 1 may fall 
(shown in Figure 27) or rise (shown in Figure 28).  In terms of his savings in period 1, 
then, a rise in the real interest rate may induce either a rise in savings (shown in Figure 
27) or a fall in savings (shown in Figure 28). 
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c2

c1y1

y2

c1
*

c2
*

initial LBC

new LBC

new 
c1

*
 

Figure 27.  If the initial situation is such that the individual optimally chose to be a saver at the end of 
period 1, then a rise in the real interest rate may cause his savings in period 1 to increase….. 

 
 

c2

c1y1

y2

c1
*

c2
*

initial LBC

new LBC

new 
c1

*
 

Figure 28. … or decrease, depending on the shape of his indifference map (i.e., depending on exactly what 
functional form his utility function has).  Thus, for an individual who optimally initially chooses to be a 
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saver during period 1, it is impossible to determine theoretically in which direction his savings changes if 
the real interest rate rises. 

 
Where does this leave us in terms of our ultimate conclusion about how private savings 
reacts to a rise in the real interest rate?  Not very far theoretically, unfortunately.  The 
summary of the above analysis is as follows.  If an individual is initially a debtor at the 
end of period 1, then a rise in the real interest rate necessarily increases his savings 
during period 1.  On the other hand, if an individual is initially a saver at the end of 
period 1, then a rise in the real interest rate may increase or decrease his savings during 
period 1.  Overall, then, theory cannot guide us as to how private savings at the 
macroeconomic level responds to a rise in the real interest rate! 
 
Where theory fails, we can turn to data.  Many empirical studies conclude that the real 
interest rate in fact has a very weak effect, if any effect at all, on private savings behavior.  
The studies that do show that real interest rates do influence savings almost always 
conclude that a rise in the real interest rate leads to a rise in savings.  The interpretation of 
such an effect seems straightforward:  if all of a sudden the interest rate on your savings 
account rises (and inflation is held constant), then you may be tempted to put more 
money in your savings account in order to earn more interest income in the future. 
 
We will adopt the (somewhat weak) empirical conclusion that the real interest rate has a 
positive effect on private savings – thus we will proceed with our macroeconomic models 
as if Figure 25 and Figure 27 are correct and Figure 28 is incorrect.34 
 
This leads us to graph the upward-sloping aggregate private savings function in Figure 
29. 
 

 
Stocks vs.  Flows 
 
Let’s return to the critical difference between stock variables and flow variables.  Stated 
in terms of real goods (and as Figure 23 displays), the stock (or, equivalently, 
accumulation) variables are a0, a1, and a2; and the flow variables are c1, c2, y1, y2; s1, 
and s2.  
 
It is hard to emphasize how much the distinction between stock variables and flow 
variables matters for all of macroeconomic analysis!  As our multi-period frameworks 
soon begin to include more and more time periods, the critical concepts of stocks vs. 
flows will continue to help us think about various economic events play out.  So you are 
highly encouraged to understand the difference right away. 

                                                 
34 Though debate amongst macroeconomists over this issue is not yet settled, this seems to be the most 
commonly-accepted interpretation of the results. 
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savings1

r
savings supply

(market)

 
Figure 29.  The upward-sloping aggregate private savings function. 

 
 

Lagrange Characterization – the Consumption-Savings 
Optimality Condition 
 
As we did with the consumption-leisure model, it is useful to work through the 
mechanics of analyzing the two-period model using our Lagrange tools.  In analyzing 
multi-period models using Lagrangians, it turns out we have two alternative and 
distinctly useful ways of proceeding:  an approach we will refer to as a lifetime 
Lagrange formulation and an approach we will refer to as a sequential Lagrange 
formulation.   
 
These ideas will hopefully become clear as we describe how to pursue these two different 
Lagrange approaches, but the advantages and disadvantages of the two approaches can be 
summarized as follows.  For a simple two-period model, the lifetime Lagrange 
formulation is essentially nothing more than a formal mathematical statement of the 
graphical analysis we have already conducted.  It emphasizes, as the terminology 
suggests, that consumers can be viewed as making lifetime choices.  The sequential 
Lagrange formulation, on the other hand, emphasizes the unfolding of economic events 
and choices over time, rather than starting from an explicitly lifetime view. In the end, the 
sequential approach will bring us to exactly the same conclusion(s) as the lifetime 
approach; the sequential approach will thus seem like a more circuitous mode of analysis. 
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We introduce the sequential Lagrangian approach, however, for two reasons.  One reason 
is that when we soon extend things to an infinite-period model, in which graphical 
analysis becomes quite infeasible, the lifetime Lagrangian formulation (which, as just 
stated, is really just a mathematical formulation of analysis that can otherwise be carried 
out purely graphically) inhererently becomes a bit less interesting.   
 
A second, and quite related, reason that sequential Lagrangian analysis is of interest is 
that it will allow us to explicitly track the dynamics of asset prices over time as 
macroeconomic events unfold over time.  In the lifetime view of the two-period model, 
we effectively end up removing from our analysis the “intermediate asset position” A1.  
In the richer infinite-period models to come, we will offer quite specific various 
interpretations of what A1 “is,” and we will naturally end up being concerned with “its 
price.”  Here, we have been loosely speaking of A as the “amount of money in the bank.”  
This is a fine enough interpretation for now, but we will develop the concept of “A” much 
further in the chapters ahead, and the sequential Lagrangian approach will prove 
extremely useful in thinking about specific instantiations of A. 
 
In what follows, we will formulate both the lifetime and sequential Lagrangians in 
nominal terms, but one could easily pursue either in real terms, as well – a useful exercise 
for you to try yourself. 
 
 
Lifetime Lagrangian Formulation 
 
To construct the lifetime Lagrangian for the two-period model, the general strategy is just 
as we have seen several times already:  sum the objective function together with the 
constraint function (with a Lagrange multiplier attached to it) to form the Lagrangian, 
compute first-order conditions, and then conduct relevant analysis using the first-order 
conditions.  The objective function to be maximized is obviously the consumer’s lifetime 
utility function u(c1, c2).  The relevant constraint – recall we are pursuing the lifetime 
Lagrangian here – is the consumer’s LBC.  Associating the multiplier   with the LBC, 
the lifetime Lagrangian for the two-period model is 
 

 2 2 2
1 2 1 1 1( , )

1 1

Y P c
u c c Y Pc

i i
        

. 

 
Note for simplicity we have dropped any initial assets, just as we did in our graphical 
analysis, by assuming A0 = 0; none of the subsequent analysis depends on this 
simplifying assumption. 
 
It should be clear by now that, apart from the first-order condition on the Lagrange 
multiplier, the two relevant first-order conditions that we need to compute are those with 
respect to c1 and c2.  Indeed, these are the formal objects we need to compute.  However, 
before simply proceeding to the mathematics, let’s remind ourselves of what it means 
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conceptually when we construct these objects.  A first-order condition with respect to any 
particular variable (think in terms of basic calculus here) mathematically describes how a 
maximum is achieved by optimally setting/choosing that particular variable, taking as 
given the settings/choices for all other variables.  In terms of the economics of our model, 
the consumer is optimally choosing both c1 and c2 (in order to maximize utility), which, 
from the formal mathematical perspective, requires computing first-order conditions of 
the Lagrangian with respect to both c1 and c2.  Keep this discussion in mind when we 
consider the sequential Lagrangian. 
 
The first-order conditions with respect to c1 and c2 (we’ll neglect here the first-order 
condition with respect to  , which, as should be obvious by now, simply returns to us the 
LBC) thus are: 
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The next step, as usual, is to eliminate   from these two conditions.  From the first 

expression, we have 1

1

/u c

P
  
 ; inserting this into the second expression gives us 
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exact Fisher equation, we know is equal to 
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.  Slightly rearranging the resulting 

expression 
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which is our two-period model’s consumption-savings optimality condition.  The 
consumption-savings optimality condition describes what we saw graphically in Figure 24:  
when the representative consumer is making his optimal intertemporal choices, he 
chooses c1 and c2 in such a way as to equate his MRS between period-1 consumption and 
period-2 consumption (the left-hand-side of the above expression) to (one plus) the real 
interest rate (the right-hand-side of the above expression).  The real interest rate (again, 
more precisely, one plus the real interest rate) is simply the slope of the consumer’s LBC.  
The two-period model’s consumption-savings optimality condition will be present in the 
richer infinite-period model we will build soon. 
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Sequential Lagrangian Formulation 
 
We can alternatively cast the representative consumer’s choice problem in the two-period 
world on a period-by-period basis.  That is, rather than take the lifetime view of the 
consumer’s decision-making process, we can take a more explicitly sequential view of 
events.  A bit more precisely, we can think of the consumer as making optimal decisions 
for period 1 and then making optimal decisions for period 2.  If there were more than just 
two periods, we could think of the consumer as then making optimal decisions for period 
3, and then making optimal decisions for period 4, and then making optimal decisions for 
period 5, and so on. 
 
In this explicitly sequential view of events, the consumer, in a given period, chooses 
consumption for that period along with an asset position to carry into the subsequent 
period.  That is, in period t (where, in the two-period model, either t =1 or t = 2), the 
consumer chooses consumption ct and asset position At; note well the time-subscripts 
here.  Also, crucially, note that in the sequential formulation, we are thinking explicitly of 
the consumer as making an optimal choice with regard to intermediate asset positions; in 
the lifetime formulations of the two-period model, whether graphical or Lagrangian, we 
effectively removed intermediate asset positions from the analysis, as we have noted a 
couple of times.  In the sequential formulation, we do not remove intermediate asset 
positions from the analysis; think of this as the consumer deciding how much to put in (or 
borrow from) the bank. 
 
Formally, in order to construct the sequential Lagangian, we must, as always, determine 
what the relevant objective function and constraint(s) are.  The objective function, as 
usual, is simply the representative consumer’s utility function.  In terms of constraints, in 
the sequential formulation we will impose all of the period-by-period budget 
constraints, rather than the LBC.  In our two-period model, we obviously have only two 
budget constraints, one describing choice sets in period 1 and one describing choice sets 
in period 2. 
 
Almost all of our Lagrangian analyses thus far have used only one constraint function.  
But recall from our review of basic mathematics that it is straightforward to extend the 
Lagrangian method to handle optimization problems with multiple constraints.  All we 
need to do, once we have identified the appropriate constraints, is associate distinct 
Lagrange multipliers with each constraint and then proceed as usual. 
 
To construct the sequential Lagrangian, then, associate the multiplier 1  with the period-1 

budget constraint and the multiplier 2  with the period-2 budget constraint – note that 1  

and 2  are distinct multipliers, which in principle have nothing to do with each other.  

The sequential Lagrangian is thus 
 
 1 2 1 1 1 1 1 2 2 1 2 2( , ) [ ] [ (1 ) ]u c c Y Pc A Y i A P c        . 
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In writing this Lagrangian, we have used our assumption that A0 = 0 and our result that A2 
= 0.  The sequential analysis then proceeds as follows.  Compute the first-order 
conditions for the consumer’s choice problem in period 1:  recall from our discussion 
above that in period 1, the consumer optimally chooses c1 and A1.  Mathematically, this 
requires us to compute the first-order conditions of the Lagrangian with respect to these 
two variables; they are 
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Next, compute the first-order conditions for the consumer’s choice problem in period 2:  
in period 2, the consumer optimally chooses c2 and A2.  Mathematically, this requires us 
to compute the first-order conditions of the Lagrangian with respect to these two 
variables.  Of course, in the two-period model, we have that A2 = 0, so due solely to the 
artifice of the two-period model, we actually do not need to compute the first-order 
condition with respect to A2; only if we had more than two periods in our model would 
we need to compute it.  Thus, all we need from the period-2 optimization is the first-order 
condition with respect to c2, which is   
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Let’s proceed to eliminate multipliers from the three first-order conditions we just 
obtained (and note that we’ll skip considering the first-order conditions with respect to 
the two multipliers – as should be obvious by now, they simply deliver back to us the 
period-1 budget constraint and the period-2 budget constraint).  Note that we now have 
two multipliers to deal with.  From the first-order condition on A1, we have 1 2 (1 )i   .  

We’ll have much more to say about this type of relationship between multipliers – this 
expression that links multipliers across time periods – when we study the infinite-period 
model; for now, let’s just exploit the mathematics it provides.  Take this expression for 

1  and insert it in the first-order condition on c1, yielding 2 1
1

(1 )
u

i P
c


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
.  We’ve gotten 

rid of the multiplier 1  but are still left with 2 .  Fortunately, we can use the first-order 

condition on c2 to obtain an expression for the period-2 multiplier:  2
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 .   Now, 

insert this expression into the previously-obtained condition to get 
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in which we finally have eliminated all multipliers.  Rearranging this expression a bit, 
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We have seen the right-hand-side of this expression a couple of times already, and we 
know that we can transform it (using the definition of inflation and the Fisher 
relationship) into 1 + r.  Thus, the last expression becomes 
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which clearly is simply the consumption-savings optimality condition we derived above 
in the lifetime formulation of the problem.  Because we have already derived and 
discussed it, there of course is no reason to discuss the economics of it again.   
 
The idea to really understand and appreciate here is that, whether we pursue the lifetime 
Lagrangian approach or the sequential Lagrangian approach, we arrive at exactly the 
same prediction regarding how consumers optimally allocate their intertemporal 
consumption choices:  they do so in such a way as to equate the MRS between period-1 
consumption and period-2 consumption to (one plus) the real interest rate.   
 
The mathematical difference between the two approaches is that in the sequential 
approach we had to proceed by explicitly considering the first-order condition on the 
intermediate asset position A1, which generated a relationship between Lagrange 
multipliers over time.  Through the optimal decision on A1, the consumer does take into 
account future period events, even though the mathematics may not make it seem 
apparent.  In the lifetime approach, no such relationship had to formally be considered 
because there was, by construction, only one multiplier. 
 
In the end, we should not be surprised that we reached the same conclusion using either 
approach – indeed, they are simply alternative approaches to the same problem, the 
problem being the representative consumer’s utility maximization problem over time. 
 
 
Optimal Numerical Choice 
 
Regardless of a lifetime or sequential analysis, the same exact consumption-savings 

optimality condition arises:  1
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 
.  This expression is part of the heart of 

macroeconomic analysis. 
 
However, if we actually wanted to solve for numerical values of the optimal choices of 
period-1 and period-2 consumption, the consumption-savings optimality condition is not 
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enough.  Why?  Because the consumption-savings optimality condition is one 
equation in two unknown variables.  A simple way to see this is to take the case of 

1 2 1 2) l( , lnnu c c cc  .  The consumption-savings optimality condition is thus c2/c1 = 1+r 

(which at this point you should be able to obtain yourself).  Even though the market real 
interest rate r is taken as given, it is clearly impossible to solve for both c2 and c1 from 
this one equation. 
 
This might be obvious by this point (especially given all of the indifference-curve/budget 
constraint diagrams in Figure 25, Figure 26, Figure 27, and Figure 28!), but to complete 
the numerical solution of the two-period framework requires us to use both the 
consumption-savings optimality condition and the budget constraint to pin down the 
optimal numerical choices of consumption across time.  In other words, there are two 
equations in the two unknowns, period-1 consumption and period-2 consumption.  The 
ensuing example takes us step-by-step though the analysis, and it also raises an important 
economic interpretation of the optimal consumption choices across time that arise. 
 

Consumption Smoothing 
 
The concept of “consumption smoothing” is an important underlying theme of the 
results that emerge from multi-period representative consumer utility maximization.  This 
powerful and intuitive economic result arises not just in the two-period framework, but 
also in the progressively richer models we will construct later. 
 
An example using the two-period model sheds light on the idea of consumption 
smoothing.   
 
Consumption-Smoothing Example 
 
Suppose the lifetime utility function is 1 2 1 2) l( , lnnu c c cc  .   And also assume that P1 = 

1, P2 = 1, A0 = 0, r = 0.10. 
 
Case 1:  Suppose the lifetime stream of nominal income is concentrated in the “later” 
period of the consumer’s economic planning horizon – for example, Y1 = 2 and Y2 = 11. 
 
To solve for the optimal numerical values of c1 and c2 requires use of the pair of 
expressions 
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and  
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The few steps of algebra are left for you to go through (which is good reinforcement of 
basics).  The numerical values of the optimal choices of consumption across time turn out 
to be 
 

* *
1 26,   6.6c c  . 

 
Case 2:  Suppose instead the lifetime stream of nominal income is more evenly spread 
through the “early” period and the “later” period of the consumer’s economic planning 
horizon – for example, Y1 = 7 and Y2 = 5.5.  Once again, the optimal numerical values of 
consumption are determined by the consumption-savings optimality condition and the 
budget constraint.  And also once again leaving the few steps of algebra for you to verify, 
optimal choices of consumption across time turn out to be 
 

* *
1 26,   6.6c c  . 

 
Clearly, the lifetime path of optimal consumption is the same, despite the large difference 
between the Case 1 lifetime income path (Y1 = 2, Y2 = 11) and the Case 2 lifetime income 
path (Y1 = 7, Y2 = 5.5). 
 
This example demonstrates the two different facets of consumption smoothing.  The 
first aspect is that individuals prefer their consumption across time to not vary very much.  
This result arises due to strictly increasing and strictly concave lifetime utility, which is 
part of the preference side of the framework.    
 
The second aspect arises from the constraint side of the framework.  Despite the two 
very different income scenarios in the example, optimal c1 and c2 are identical.  The 
identical optimal consumption streams, despite the very different income streams, is due 
to the ability of the individual to borrow (in Case 1) as much as he or she wants during 
period one, and hence be in debt at the very beginning of period two.  This is highlighted 
in the negative value of the A1 term that arises in Case 1:   
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If, counter to the example, the individual faced another constraint, in addition to the 
budget constraints, that allowed no borrowing at all during period one, the Case 1 
consumption outcomes would be quite different:  we would have c1 = 2 and c2 = 11 as the 
“credit-constrained” optimal choices for Case 1. 
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Without the credit constraint, the Case 1 individual is borrowing (that is, dissaving) 
during period one, and repaying the accumulated debt, inclusive of interest payments, in 
period two.  In Case 2, the individual is saving during period one, and using the 
accumulated wealth (inclusive of interest earnings) for consumption in period two.  Using 
all of the terminology and definitions of the two-period consumption-savings framework, 
you should be able to verify all of this for yourself. 
 
 
 
 


