
Initial submission for MOF 2.0 Query / Views /
Transformations RFP

QVT Partners
http://qvtp.org/

Version 1.0 (2003/03/03)

Submitted by:

Tata Consultancy Services

Supported by:

Artisan Software
Kinetium
King’s College London
University of York

Contents

Copyright 4

Preface 5
This version of the submission . 5
Submission contact point . 5
Guide to the material in the submission . 5
Statement of proof of concept . 5
Resolution of RFP requirements and requests . 5
Submitters . 6
Supporters . 6
Submission team . 6

I RESPONSE TO THE RFP 7

1 Introduction 9
1.1 An overview of the RFP . 9
1.2 MDA . 9

1.2.1 Uses .11
1.3 A general scenario . 12
1.4 Our proposal .12
1.5 Queries .12
1.6 Views .13
1.7 Transformations . 13

1.7.1 A layered approach to the definition of transformations 13
1.7.2 Relations, mappings and implementations . 15
1.7.3 Transformation state . 16
1.7.4 Domains . 16
1.7.5 Reusing transformations . 16
1.7.6 Pattern matching . 17
1.7.7 A simple example . 18
1.7.8 Summary . 19

2 Resolution of RFP requirements 21
2.1 Mandatory requirements . 21

2

2.2 Optional requirements . 22
2.3 Issues to be discussed . 23
2.4 Relationship to Existing OMG Specifications . 23

II TECHNICAL DETAILS 25

3 Overview 27

4 Infrastructure 29
4.1 Abstract syntax . 29

4.1.1 Operations . 30
4.1.2 Well-formedness rules . 30

4.2 Semantic domain . 31
4.3 Semantic relation . 31

5 Superstructure 33
5.1 Relations .33

5.1.1 Structuring Relations . 34
5.1.2 Refinement . 34
5.1.3 Meta-entity overview . 34
5.1.4 Well-formedness rules . 36
5.1.5 Transformation organization meta-model . 37
5.1.6 Examples . 37
5.1.7 Remove multiple inheritance . 40

5.2 Mappings .40

6 Superstructure translation 43

7 Compliance points 45

III APPENDICES 47

A Examples 49
A.1 DOS file system to UNIX file system . 49
A.2 Superstructure operator . 49
A.3 Multiple to single inheritance . 49
A.4 Classes to tables . 49
A.5 Information system model to J2EE . 49

B Glossary 51

Bibliography 53

3

Copyright c©2003 Kings College London

Copyright c©2003 Tata Consultancy Services

Copyright c©2003 University of York

The companies and individuals listed above hereby grants a royalty-free license to the Object Management

Group, Inc. (OMG) for worldwide distribution of this document or any derivative works thereof within OMG

and to OMG members for evaluation purposes, so long as the OMG reproduces the copyright notices and the

below paragraphs on all distributed copies.

The companies and individuals listed above have granted to the Object Management Group, Inc. (OMG) a

nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this

document and distribute copies of the modified version.

The copyright holders listed above have agreed that no person shall be deemed to have infringed the copy-

right, in the included material of any such copyright holder by reason of having used the specification set forth

herein or having conformed any computer software to the specification.

NOTICE: The information contained in this document is subject to change with notice.

The material in this document details a submission to the Object Management Group for evaluation in ac-

cordance with the license and notices set forth on this page. This document does not represent a commitment

to implement any portion of this specification by the submitter.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OB-

JECT MANAGEMENT GROUP AND THE COMPANIES AND INDIVIDUALS LISTED ABOVE MAKE

NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIM-

ITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

The Object Management Group and the companies and individuals listed above shall not be liable for errors

contained herein or for incidental or consequential damages in connection with the furnishing, performance or

use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through

its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of

computer software to use certification marks, trademarks or other special designations to indicate compliance

with these materials.

This document contains information that is patented which is protected by copyright. All Rights Reserved.

No part of the work covered by copyright hereon may be reproduced or used in any form or by any means

– graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and

retrieval systems – without permission of the copyright owners. All copies of this document must include the

copyright and other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of copies

of this document (up to fifty copies) for their internal use as part of the OMG evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions

as set forth in subdivision (c) (1) (ii) of the Right in Technical, Data and Computer Software Clause at DFARS

252.227.7013.

OMG R© is a registered trademark of the Object Management Group, Inc.

4

Preface

This version of the submission

This is an initial submission to the QVT RFP. Although many parts of the document are in a very polished state,

other parts remain to be filled in.

This version of the submission was generated at 21:44 GMT on March 3, 2003 by Laurence Tratt.

Submission contact point

Sreedhar Reddysreedharr@pune.tcs.co.in

The QVT Partners host a web site athttp://qvtp.org/ where you can find out further information about

the submission. You can also download the latest version of this submission, and join the submission’s public

announcmentqvt-announce@qvtp.org and discussionqvt-discuss@qvtp.org mailing lists.

Guide to the material in the submission

This document is structured in two main parts:

I. This section contains an overview of our response to the RFP (section1) and details our resolution of

RFP requirements and requests (section2). This later section also includes a summary of our submissions

compliance with existing OMG standards such as CWM (section2.4).

II. This section contains the technical details of our specification.

Statement of proof of concept

Prototype implementations of the submission are currently being developed in the submitters meta-modeling

tools. Examples, including some of those presented in this document, already run successfully through the

tools, confirming the power of our proposed solution.

Resolution of RFP requirements and requests

See section2 on page21.

5

Submitters

This document is submitted by the following OMG members:

Tata Consultancy Services http://www.tcs.com/

Supporters

This document is supported by the following OMG members:

Artisan Software http://www.artisansw.com/

Kinetium http://www.kinetium.com/

King’s College London http://www.kcl.ac.uk/

University of York http://www.york.ac.uk/

Submission team

The following people have been chiefly responsible for the work involved in this version of the submission:

King’s College London Biju Appukkutan biju@dcs.kcl.ac.uk

Tony Clark anclark@dcs.kcl.ac.uk

Laurence Tratt laurie@tratt.net

Tata Consultancy Services Sreedhar Reddy sreedharr@pune.tcs.co.in

R. Venkatesh rvenky@pune.tcs.co.in

University of York Andy Evans andye@cs.york.ac.uk

Girish Maskeri girishmr@cs.york.ac.uk

Paul Sammut pauls@cs.york.ac.uk

James Willans jwillans@cs.york.ac.uk

6

Part I.

RESPONSE TO THE RFP

7

1. Introduction

This document is an initial submission to theQueries, Views and Transformations(QVT) Request For Proposal

(RFP) document [OMG02] issued by the Object Management Group (OMG) in April 2002.

In this chapter we aim to give an overview of our interpretation of the RFP, and also an overview of our

proposal. As this chapter is, by design, short and to the point it should not be viewed as authoritative; partII of

this document contains our definitive specification.

1.1. An overview of the RFP

Queries, views and transformations are subjects which will be vital to the success of the OMG’s Model Driven

Architecture Initiative (MDA – see section1.2). The ability to manipulate models involved in the MDA process

is crucial to the success of MDA and it is this ability which the QVT RFP aims to find a solution for.

We now present high level definitions of the RFP’s subjects:

Queries take as input a model, and select specific elements from that model.

Views are models that are derived from other models.

Transformations are model specifications or model mappings that take as input a model and relate it to a

model, or create a new model respectively.

It is important to note that queries, views and transformations can be split into two distinct groups. Queries

and transformations take models and perform actions upon them, resulting in a new or changed model. In

contrast to that, views themselves are models. Queries and transformations may possibly create views, but

views themselves are passive.

1.2. MDA

[OMG02] defines the MDA vision thus:

MDA defines an approach to IT system specification that separates the specification of system func-

tionality from the specification of the implementation of that functionality on a specific technology

platform, and provides a set of guidelines for structuring specifications expressed as models.

The MDA approach and the standards that support it allow the same model specifying system

functionality to be realized on multiple platforms through auxiliary mapping standards, or through

point mappings to specific platforms, and allows different applications to be integrated by explicitly

relating their models, enabling integration and interoperability and supporting system evolution as

platform technologies come and go.

9

1. Introduction

In less technical terms, MDA aims to allow developers to create systems entirely with models1. Furthermore,

MDA envisages systems being comprised of many small, manageable models rather than one gigantic mono-

lithic model. Finally, MDA allows systems to be designed independently of the eventual technologies they will

be deployed on; a Platform Independent Model (PIM) can then be transformed into a Platform Specific Model

(PSM) in order to run on a specific platform.

In [DSo01] D’Souza presents another perspective of MDA and introduces the concepts of horizontal and

vertical dimensions. A vertical dimension represents changing levels of abstraction in a particular part system.

A horizontal dimension represents different parts of a system e.g. different departments within a company. A

complete model of a system will be comprised of all the relevant horizontal dimensions integrated together, and

all at a specific level of abstraction.

No matter what perspective on MDA one has, two common threads run through them all: model federation

and platform independence. Figure1.1(based partly on a D’Souza example) shows an overview of this idea. It

shows a company horizontally split into multiple departments, each of which has a model of its system. These

models can be considered to be views on an overall system PIM. The PIM can be converted into a PSM. In

order to realize this vision, there has to be some way to specify the changes that models such as that in figure

1.1 undergo. The enabling technology istransformations. In figure 1.1 a transformationT1 integrates the

company’s horizontal definitions into an overall PIM, and a transformationT2 converts the overall PIM into a

PSM.

T

PIM

Marketing
model Engineering

model

T

PSM

Integration

Deployment

2

1

Figure 1.1.:Transformations and MDA

The concepts of abstraction and refinement are also vital to MDA. Not only do these play a part in models

created within the MDA framework, but also to the MDA framework itself. Figure1.2shows the PIM to PSM

1This does not mean thateverythingmust be specified fully or even semi-graphically – the definition of model allows one to drill
down right to source code level.

http://qvtp.org/ 10 QVT-Partners

1.2. MDA

transformation from figure1.1expanded to reflect the fact that often complex transformations are not done in a

single step. Rather, models often go through several intermediate stages before reaching a final transformation.

PIM

T

PSM

PIM

T

Intermediate
PIM/PSM

PSM

1

Tn

...

Figure 1.2.:An expanded PIM to PSM transformation

Transformations are undoubtedly the key technology in the realization of the MDA vision. They are present

explicitly – as in the transformation of a PIM to a PSM – and implicitly – the integration of different system

views – throughout MDA.

1.2.1. Uses

The following are some representative MDA related uses where transformations are, or could be, involved:

• Integrating the components of a horizontal direction in a federated model. This is the example used in

figure1.1.

• Converting a model ‘left to right’ or ‘right to left’. This is a very common operation in tools, for example

saving a UML model to XML and reading it back in again.

• Converting a PIM into a PSM. The PSM’s meta-model might be one of J2EE or .net. As shown in figure

1.2, there is no reason why the conversion has to necessarily happen in one stage.

QVT-Partners 11 http://qvtp.org/

1. Introduction

• Reverse engineering. For example, a tool which recovers Java source code from class files.

• Technology migration. This is similar to reverse engineering, but whereas reverse engineering is simply

trying to recover lost information, technology migration is effectively trying to convert outdated systems

into current systems. For example, a tool which migrates legacy COBOL code to Java.

1.3. A general scenario

 A

 B C D

 G I

 J

 H

Domain

Transformation

T

Figure 1.3.:A high level transformation

Figure1.3 shows a high-level view of what a user might expect a transformation to look like. Please note

that this figure doesnot reflect the concrete syntax we use in the rest of this document.

In figure 1.3, a transformationT involves two model domains. We have intentionally drawn the model

domains with a vague outline, as different users may have different expectations of what precisely a domain

should be – for example, single model elements, sets of model elements, and packages are supported by our

proposal. Regardless of the precise definition of domain chosen, the important fact at this high level is that

transformations involve domains. At this stage we make no assumptions about the number of domains involved

in a transformation, nor about any notion of directionality or executability.

We build upon this high-level scenario throughout the rest of this chapter.

1.4. Our proposal

In the subsequent sections of this chapter, we present an overview of our proposals to the three main parts of

the RFP individually. Full technical details are presented in partII of this document.

Our proposal is particularly concerned with providing a comprehensive solution to transformations. This

is chiefly because we feel that a practicable, technically sound, definition of transformations will be the main

enabling factor in achieving MDA, and that such a definition of transformations presents a considerably greater

challenge than similar definitions of queries and views.

1.5. Queries

We propose that a possibly extended version of OCL 2.0 is used as the query language. OCL 2.0 resolves

OCL 1.3’s deficiencies as a query language [MC99]. Using OCL has several benefits: the user community is

http://qvtp.org/ 12 QVT-Partners

1.6. Views

R

M2

TA

A

A

A

B

B

B

B

Transformation involving domains A and B

Relation between domain A and domain B

Mapping from domain A to domain B

Mapping from domain B to domain A

M1

T T1 2 T is a component transformation of T2 1

Figure 1.4.:Concrete syntax

intimately familiar with it; no effort need be expended on the definition of ‘yet another new language’; and

there is already substantial tool support for OCL.

1.6. Views

We propose that a view is a projection on a parent model, created by a transformation. From this simple

definition, we can build the necessary machinery to cope with advanced technologies such as RM-ODP style

viewpoints [BMR95]. Viewpoints are an interesting and useful abstraction technique. Essentially, they can be

viewed as being analogous to a query which not only creates a view but also potentially restricts the meta-model

of the view as well. Thus from each viewpoint one does not in general have enough information to rebuild the

entire system. One possible mechanism for dealing with viewpoints in our proposal is to use a query to create a

view of a model, and then use a transformation to alter the view to reflect the viewpoints restricted meta-model.

For the purposes of this initial submission we note the importance of addressing topics such as model inte-

gration and consistency, but do not put forward any concrete proposals for them.

1.7. Transformations

Our submission presents a detailed proposal for transformations. In order to aid quick comprehension, in

this overview we present the most relevant points in separate subsections. As this section contains several

transformation diagrams, figure1.4 shows the most important parts of concrete syntax we use in relation to

transformations. Note that although figure1.4 shows transformations, relations and mappings between two

domains, our definitions allow each of these to be, in general, between an arbitrary number of domains.

1.7.1. A layered approach to the definition of transformations

Our definition of transformations comes in two distinct layers. Reusing terminology familiar from the UML2

process, we name these layersinfrastructureandsuperstructure.

We define a simple infrastructure which has a small extension to the MOF meta-model and whose semantics

are easily defined in terms of existing OMG standards. The infrastructure contains what we consider to be

QVT-Partners 13 http://qvtp.org/

1. Introduction

a sensible minimum of machinery necessary to support all types of transformations. The infrastructure is

necessarily low-level and not of particular importance to end users of transformations. Its use is a simple

semantic core; its presence is also useful for tool vendors.

Secondly we present a superstructure which contains a much higher-level set of transformation types suitable

for end users. Some parts of the infrastructure are effectively included ‘as is’ in the superstructure. Concepts

which exist in the superstructure but not in the infrastructure have a translation into the infrastructure. In this

submission we present the definition of a standard superstructure. This superstructure contains plug points to

allow it to be easily extended with new features. However, the very nature of our infrastructure/superstructure

split also means that it is possible to create completely new superstructures, provided that they have a translation

down into the infrastructure.

By separating out the concepts of infrastructure and superstructure we gain a significant advantage: whilst

the infrastructure remains unchanged, different types of transformation can be added to the superstructure to

support different user domains. Tools which support the infrastructure definition will be able to also support

extensions or alterations of the superstructure. Note that we specifically do not preclude the possibility of tools

having native support for superstructure, or variants on the superstructure.

Figure1.5shows an overview of how a superstructure model is translated into an infrastructure model. The

general idea is that rich models in the superstructure are translated into much simpler models in the infrastruc-

ture; the information that is lost in the transition from rich to simple models is ‘recovered’ by adding extra

informationQ into the infrastructure translation, as OCL constraints or ASL as appropriate. Information that is

encoded inQ includes such things as typing and structural information.

 A

 B C D

 G I

 J

 H
T

P

ModelElement T

P and Q

ModelElement

Figure 1.5.:Translating superstructure (top) to infrastructure (bottom)

Most of the rest of this section is relevant to both infrastructure and superstructure; when this is not the case,

we explicitly note the fact.

http://qvtp.org/ 14 QVT-Partners

1.7. Transformations

1.7.2. Relations, mappings and implementations

We have devised an overall framework for transformations that allows one to use a variety of different transfor-

mation styles; furthermore, our framework also transparently allows transformations to change style throughout

the lifetime of a system. Such transparency is enabled by our identification of two distinct sub-types of trans-

formations:relationsandmappings.

Relations are multi-directional transformation specifications i.e. they are declarative. In the general case they

are non-executable, but we have identified useful restricted types of bi-directional relations which can be

automatically refined into mappings. Relations are written in any valid UML constraint language, OCL

being an obvious example.

Typically relations are used in the specification stages of system development.

Mappings are transformation implementations i.e. they are operational. Unlike relations, mappings are po-

tentially uni-directional. Mappings are expressed in the Actions Semantics Language (ASL) and thus

encompass all programming language implementations.

Mappings canrefineany number relations, in which case the mapping must be consistent with the rela-

tions it refines.

Figure1.6shows a relationR relating two domains. There is also a mappingMwhich refines relationR; since

Mis directed, it transforms model elements from the right hand domain into the left hand domain.

 A

 B C D

 G I

 J

 H
R

M

Mapping

<<refines>>

Relation

Figure 1.6.:A high level relation being refined by a directed mapping

Figure1.7 shows how transformations, relations and mappings are placed within the MOF hierarchy. As

Transformation is a super-type ofRelation andMapping , when we talk about a transformation we

effectively mean ‘either a relation or a mapping, we don’t mind which one’. When we talk about a mapping,

we specifically mean ‘a mapping and only a mapping’ – and similarly for relations.

The differentiation between specification and implementation is vital. In many complex applications of

transformation technology it is often unfeasible to express a transformation in operational terms. For example,

during the initial stages of system development, various choices which will effect an implementation may

not have been made, and thus it may be undesirable to write an implementation at that stage. Another more

general reason for the presence of specifications is that transformation implementations often carry around

large amounts of baggage which, whilst vital to the transformations execution, obscure the important aspects

QVT-Partners 15 http://qvtp.org/

1. Introduction

Transformation

Class

Relation Mapping

Figure 1.7.:Transformations, relations and mappings in the MOF hierarchy

of a transformation – by using specifications, these important aspects can be easily highlighted. Nevertheless,

implementations are vital for the final delivered system. We also propose a standard operational transformation

to prevent the need to drop to low level technologies such as the XML transformation system XSLT (XSL

Transformations) [W3C99] – in order for transformations to be a successful and integral part of MDA, it is

essential that they be modelled. Our proposal allows transformations to seamlessly and transparently evolve

from specifications to implementations at any point during the development life cycle.

1.7.3. Transformation state

In many situations, simple transformations which perform a one step transformation are not sufficient. Transfor-

mations may need to build up large amounts of information whilst in the process of transforming – particularly

if other transformations are involved in the process – and may also need to store information over transforma-

tions. A simple example of such a transformation is one which adds to elements a unique identifier based on an

incremented counter. Although one could create a new object in the system to track the counter, it is far more

natural and less cumbersome for the transformation itself to maintain the counter.

To this end, in our proposal all transformations have state, by virtue of the fact thatTransformation

subclassesClass in figure1.7.

1.7.4. Domains

In the infrastructure, transformations can be specified between an arbitrary number of labelled domains. The

primary constituent of a domain is a classifier such asClass or Set {Package }. Constraints within the

domain on the classifier allow the domain to be arbitrarily restricted further. This simple definition of domains

in infrastructure allows much richer notions to be built upon it in superstructure.

In the superstructure, domains as found in the infrastructure are not specified directly; see section1.7.6for

more details.

1.7.5. Reusing transformations

Transformations can be reused either through the specialization mechanism (we recall that transformations

are classes), by being referred to via attributes, or by the use of composite transformations. In either case,

transformations retain the property of classes that they can be examined independently of their context e.g. if

they are the parent of a sub-class.

http://qvtp.org/ 16 QVT-Partners

1.7. Transformations

Transformations can link to other transformations via the standard attribute mechanism. In such a case, the

owner transformation can then used theowned transformations in whichever way it chooses.

In the infrastructure, there are various flavours of composite relations2 (see figure4.1 for their integration

into the meta-model). Composite relations consist of a parent relation and an arbitrary number of component

relations. The semantics of a specific type of composite relation determine how the component relations effect

the parent. For example, anand composite relation requires that for the parent relation to hold between give

elements, all of the component relations must hold as well. Furthermore, composite relations often impose

restrictions on the domains of the parent and component relations. For example, in anand composite relation,

the parent relation’s domains must be a merge of all of the component relations domains; if the merge is not

well defined, then the parent relation is ill-formed itself.

Figure1.8shows some types of relation reuse. The relationR1 links to relationR2 through an attribute.R2

is anand composite relationship which has two component relationshipsR3 andR4. In order for an instance

of R2 to hold, both of its component instancesR3 andR4 must hold as well.

 A

 B C D

 G I

 J

 H

 A

 B

 I H

R1

R2

R3

R4

a

<<and>>

Figure 1.8.:Reusing relations

1.7.6. Pattern matching

Within the superstructure, we define powerful pattern matching languages for transformations. Pattern match-

ing is a proven concept within transformation systems such as XSLT. Our pattern matching language allows

model fragments to be matched against against meta-model patterns and used in transformations. In the super-

structure, both relations and mappings can have patterns. Patterns expressed in mappings translate directly into

the ASL.

2In due course we expect to extend this to some types of mapping as well.

QVT-Partners 17 http://qvtp.org/

1. Introduction

1.7.7. A simple example

Figure1.9 shows a simple example of a transformationAtoX which transforms a UML-like attribute into an

XML element. The model in figure1.9 shows a named attribute whose type is specified as a string, and an

XML element which has named start and end tags, with the start tag containingname = value attributes,

and the element consisting of a number of sub elements. Figure1.10shows an instance of the model.

UML XML

Attribute
 name: String
 value: String

Attribute
 name: String
 type: String

Element
 name: String

a

x

AtoX
attrs

Figure 1.9.:Transforming a UML-like attribute into an XML element

: XML.Element

name = "Attribute"

: UML.Attribute

name = "a"
type = "B"

: XML.Attribute

name = "Type"
value = "B"

: XML.Attribute

name = "Name"
value = "a"

:AtoX

attrsattrs

a x

Figure 1.10.:An instance of figure1.9as a relation

At this point, note that we have not specified whether the transformation is a relation or a mapping – it could

be either of these. Depending on whether the transformation actually represents a relation or a mapping, valid

instances of figure1.9would either be an object model to be checked against the relation, or an input model to

be automatically mapped into an output model. Figure1.10shows an example whereAtoX is a relation. When

written out in its more familiar textual concrete syntax, the XML in figure1.10would be as follows:

<Attribute name="a" type="b" />

Here is a sample relation for figure1.9written in OCL (note that the following relation holds in figure1.10):

context atox relation:
a.name = x.name and
x.attrs->size() = 2 and
x.attrs->exists(xa |

xa.name = "type" and
xa.value = a.type) and

x.attrs->exists(xa |
xa.name = "name" and
xa.value = a.name) and

http://qvtp.org/ 18 QVT-Partners

1.7. Transformations

Here is a sample implementation for figure1.9written in pseudo-Java:

class atox {
map_uml_attribute(UML.Attribute a) {

x = new XML.Element();
x.name = "Attribute";
a1 = new XML.Attribute();
a1.name = "Name";
a1.value = a.name;
x.attributes.append(a1);
a2 = new XML.Attribute();
a2.name = "Type";
a2.value = a.type;
x.attributes.append(a2);

}
}

1.7.8. Summary

To summarize, here are the key concepts in our proposal for transformations:

• Our definition is split into a small core infrastructure, and a richer superstructure. Superstructure is

translated into infrastructure.

• Transformation is a super type of both relation and mapping.

• Relations are fully declarative specifications. Mappings are operational implementations expressed in

the ASL.

• We provide standard pattern matching languages which, when used with mappings, translate into the

ASL.

• Transformations are stateful.

• Transformations can be specialized.

• Transformations can be arbitrarily used by other transformations.

QVT-Partners 19 http://qvtp.org/

1. Introduction

http://qvtp.org/ 20 QVT-Partners

2. Resolution of RFP requirements

2.1. Mandatory requirements

1. Proposals shall define a language for querying models. The query language shall facilitate ad-hoc

queries for selection and filtering of model elements, as well as for the selection of model elements

that are the source of a transformation.

Our proposal of a possibly extended version of OCL allows ad-hoc selection and filtering of model elements.

2. Proposals shall define a language for transformation definitions. Transformation definitions shall de-

scribe relationships between a source MOF metamodel S, and a target MOF metamodel T, which can be

used to generate a target model instance conforming to T from a source model instance conforming to S.

The source and target metamodels may be the same metamodel.

Mappings in both the infrastructure and the superstructure definitions allow generation of modelT from S

where theT andS may or may not share a meta-model.

3. The abstract syntax for transformation, view and query definition languages shall be defined as MOF

(version 2.0) metamodels.

Our infrastructure definition is an extension of the existing MOF definition, and can be easily modified to

support MOF 2.0, with minor modifications.

4. The transformation definition language shall be capable of expressing all information required to gener-

ate a target model from a source model automatically.

Both our infrasturcture and superstructure definitions are capable of expressing all the neccessary information

for transformations.

5. The transformation definition language shall enable the creation of a view of a metamodel.

In our submission, views are created by transformations.

6. The transformation definition language shall be declarative in order to support transformation execution

with the following characteristic:

• Incremental changes in a source model may be transformed into changes in a target model imme-

diately.

Our submission has the concept of relations which are fully declarative.

7. All mechanisms specified in Proposals shall operate on model instances of metamodels defined using

MOF version 2.0.

21

2. Resolution of RFP requirements

2.2. Optional requirements

1. Proposals may support transformation definitions that can be executed in two directions. There are two

possible approaches:

• Transformations are defined symmetrically, in contrast to transformations that are defined from

source to target.

• Two transformation definitions are defined where one is the inverse of the other.

Relations allow transformations to be defined between any number of domains. Although they are not, in gen-

eral, executeable, as relations are fully declarative, they place no restrition on which directon transformations

go betweens.

Mappings are directed transformations, and can therefore one mapping can be an inverse of another.

2. Proposals may support traceability of transformation executions made between source and target model

elements.

In the superstructure, transformation tasks can be used to trace transformation executions.

3. Proposals may support mechanisms for reusing and extending generic transformation definitions. For

example: Proposals may support generic definitions of transformations between general metaclasses

that are automatically valid for all specialized metaclasses. This may include the overriding of the

transformations defined on base metaclasses. Another solution could be support for transformation

templates or patterns.

Reuse is an integral part of our definition. Transformations may specialise one another. Composite transfor-

mations reuse transformations as their constituent components. Transformations may also have links to other

transformations and control them in completely arbitrary ways.

4. Proposals may support transactional transformation definitions in which parts of a transformation defi-

nition are identified as suitable for commit or rollback during execution.

The superstructure definition contains support for defining transactions. A transformation task can be marked

as transactional – its constituent transformations actions are either committed or rolled back together.

5. Proposals may support the use of additional data, not contained in the source model, as input to the

transformation definition, in order to generate a target model. In addition proposals may allow for the

definition of default values for this data.

Our submission places no constraints on whether or not implementations allow either relations or mappings to

perform incremental updates.

6. Proposals may support the execution of transformation definitions where the target model is the same as

the source model; i.e. allow transformation definitions to define updates to existing models. For example

a transformation definition may describe how to calculate values for derived model elements.

Our definitions do not mandate whether transformations are update in place or functional copy.

http://qvtp.org/ 22 QVT-Partners

2.3. Issues to be discussed

2.3. Issues to be discussed

1. The OMG CWM specification already has a defined transformation model that is being used in data

warehousing. Submitters shall discuss how their transformation specifications compare to or reuse the

support of mappings in CWM.

Both the infrastructure and the superstructure definitions reuse parts of CWM. For example, both the infras-

tructure and the superstructure reuse familiar graphical concrete syntax from CWM. The strictly uni-directional

nature of CWM transformations limits the amount of reuse possible from CWM, as our definitions of transfor-

mation are more flexible. Nevertheless we intend aligning with CWM as far as possible.

To give an idea of CWM’s influence on our definition, we now present a few concrete examples of over-

lap. In the superstructure definition, transformation grouping elements such asTransformationStep and

TransformationTask are identical to their CWM namesakes.Relation andDomain in our definition

find their counterparts inTransformation andDataObjectSet in CWM.

2. The OMG Action Semantics specification already has a mechanism for manipulating instances of UML

model elements. Submitters shall discuss how their transformation specifications compare to or reuse

the capabilities of the UML Action Semantics.

It is a fundamental part of our infrastructure and superstructure definitions that mappings are expressed in terms

of the ASL, allowing them to encompass all programming language definitions.

3. How is the execution of a transformation definition to behave when the source model is not well-formed

(according to the applicable constraints?). Also should transformation definitions be able to define their

own preconditions. In that case: What’s the effect of them not being met? What if a transformation

definition applied to a well-formed model does not produce a well-formed output model (that meets the

constraints applicable to the target metamodel)?

In our definition, transformations may specify preconditions.

4. Proposals shall discuss the implications of transformations in the presence of incremental changes to the

source and/or target models.

2.4. Relationship to Existing OMG Specifications

Object Constraint Language (OCL) OCL is used extensively throughout the submission and forms the basis

of our query language.

Meta Object Facility (MOF) The infrastructure meta-model is a simple extension to MOF; the superstructure

is a slightly more involved extension of MOF. Both the infrastructure and the superstructure definitions

can therefore be considered as a new member of the MOF based family of languages that currently

includes UML and CWM amongst others.

Common Warehouse Metamodel (CWM) See section2.3.

Action Semantics Language (ASL)See section2.3.

QVT-Partners 23 http://qvtp.org/

2. Resolution of RFP requirements

http://qvtp.org/ 24 QVT-Partners

Part II.

TECHNICAL DETAILS

25

3. Overview

Our definition of transformations is split into two parts:

Infrastructure The infrastructure is the small semantic core of our definition. It is not intended for end users,

although it is also useful for tool vendors who wish to provide a ‘lowest common denominator’ option.

The infrastructure is a purposefully small extension to existing OMG standards, and has a simply defined

semantics.

Superstructure The superstructure is the semantically and syntactically rich part of the definition. It is in-

tended for end users. The semantics of the superstructure are given by its translation into the infrastruc-

ture.

Since the superstructure is effectively defined in terms of the infrastructure, the definition of the infras-

turcture is critical for the overall proposal. Furthermore, the specification of the superstructure to infrastructure

translation is given separately from either definition.

27

3. Overview

http://qvtp.org/ 28 QVT-Partners

4. Infrastructure

Our definition of infrastructure is divided into separate definitions of abstract syntax, semantic domain, and

semantic relation1 in a similar manner to other specifications such as [ADP03]. For further details about this

approach to language definition see [CEK02].

4.1. Abstract syntax

Figure4.1 shows the infrastructure abstract syntax package. This package can be merged with the standard

MOF definition to produce an extended version of MOF. Original MOF elements are shown in grey; our new

elements are in black.

Constraint

Relation Mapping

Class

*Transformation
refines *

*

Attribute

domains

 And Or

Relation
conjuncts * disjuncts

 Not

Abstract Syntax

ModelElement

Domain

Figure 4.1.:Transformations abstract syntax extension to the MOF meta-model

Transformations contain a number of domains.Domain is a subtype ofAttribute in order that each

domain is named. Transformations can refine an arbitrary number of other transformations (though note that

well-formedness rules restrict this association); that is, the refining transformation can be said to be in some way

conformant to the refined transformation.Transformation is abstract and can not be directly instantiated:

every transformation is actually a relation or a mapping. There are currently three types of composite relations:

Not , And andOr . Each composite relation type links to component relations.

1We note that in other documents that use a similar approach to semantic definition, this was called ‘semantic mapping’; in our
terminology it is a relation rather a mapping.

29

4. Infrastructure

4.1.1. Operations

In the following operation definitions, we use the convention thatsuper. x calls the methodx in the superclass

of the current class withself bound to the current object.

One part of our definition deviates significantly from the norm. For model instances, we can not allow

the standard practice of constraints effectively being evaluated by an unknown external system at unknown

intervals, especially as the failure of a constraint immediately triggers an exception. This behaviour would

cause significant problems in our model since, for example, the semantics of theNot composite relation are

that a composite relation is satisfied when the constraints on it’s component relation fail. We therefore assume

that all model elements have an operationsatisfiedBy , which returnstrue or false to denote well-

formedness with respect to a particular model instance: this allows the constraints on a component relation

of a Not to fail, but the parent relation to still hold. The assumption then is that an observer then calls the

satisfiedBy method to determine if a model element is well-formed.

All constraints on a relation must be satisfied in order for it to hold:

context Relation::satisfiedBy(i : RelationInstance) : Boolean
self.constraints->forAll(c |

c.satisfiedBy(self)))

All component relations must be satisfied in order for anAnd relation to hold:

context And::satisfiedBy(i : AndInstance) : Boolean
super.satisfiedBy(i) and
i.conjuncts->forAll(r |

r.of.satisfiedBy(r))

At least one component relation must be satisfied in order for anOr relation to hold:

context Or::satisfiedBy(i : OrInstance) : Boolean
super.satisfiedBy(i) and
i.conjuncts->exists(r |

r.of.satisfiedBy(r))

The component relation must not be satisfied in order for aNot relation to hold:

context Not::satisfiedBy(i : NotInstance) : Boolean
super.satisfiedBy(i) and
not self.transformation.satisfiedBy(i.relationInstance)

4.1.2. Well-formedness rules

Attributes and domains must all be uniquely named within a transformation:

context Transformation inv:
self.domains->forAll(d |

not self.attributes->exists(a |
d.name = a.name))

http://qvtp.org/ 30 QVT-Partners

4.2. Semantic domain

A relation can not refine a mapping, because mappings are operational:

context Relation inv:
not self.refines->exists(t |

t.isKindOf(Mapping))

The domains of anAnd are a superset of the merge of all its conjuncts’ domains.merge finds the most specific

element of all domains with the same name:

context And inv:
merge(self.conjuncts.domains)->forAll(d |

self.domain->exists(d’ |
d.name = d’.name and
d.classifier.isSuperTypeOf(d’.classifier)))

The domains of anOr are a superset of the merge of all its disjuncts’ domains.

context Or inv:
merge(self.conjuncts.domains)->forAll(d |

self.domain->exists(d’ |
d.name = d’.name and
d.classifier.isSuperTypeOf(d’.classifier)))

The domains of aNot are a superset of its component.

context Not inv:
self.relation.domains->forAll(d |

self.domain->exists(d’ |
d.name = d’.name and
d.classifier.isSuperTypeOf(d’.classifier)))

4.2. Semantic domain

Figure4.2shows the semantic domain for transformations.

4.3. Semantic relation

Figure4.3shows the semantic relation for transformations.

QVT-Partners 31 http://qvtp.org/

4. Infrastructure

ConstraintEvaluation

RelationInstance MappingInstance

Object

*

refines *

*

Slot

domains

AndInstance OrInstance

RelationInstance
conjuncts * disjuncts

NotInstance

Semantic domain

TransformationInstance DomainInstance

Figure 4.2.:Transformations semantic domain

 Semantic relation

Constraint

Relation

Mapping

Class

Transformation

 And

 Or

 Not

Abstract Syntax

Domain

ConstraintEvaluation

RelationInstance

MappingInstance

Object

TransformationInstance

AndInstance

OrInstance

NotInstance

Semantic domain

DomainInstance

Attribute Slot

of

of

of

of

of

of

of

of

of

of

Figure 4.3.:Transformations semantic relation

http://qvtp.org/ 32 QVT-Partners

5. Superstructure

5.1. Relations

Classifier
 Constraint

Association
 Class
 Trasnformation
 Dependency

ClassRole
 Domain
 Relation
 RelationDependency

AssociationRole
 Refinement
 And
 Or
 SubRelation
 Elaboration

Mapping
Dependecy
 Transformation
 Operation
 Action

end1

end2

2...*

type

end2
end1

type

related

Domain
 parent

child

*

*

*

2...*
 disjunct

subDomainPath

1
1
 mapping

embeds

1...*
 *

*

*
 conjunct
 2...*

Figure 5.1.:Relations meta-model

Figure5.1 shows a transformations meta-model that extends the transformations meta-model given in the

infrastructure. The elementsTransformation , Relation , Domain , And, Or and Mapping inherit

from and extend the corresponding elements in the infrastructure. This model extends the MOF core model.

Elements from MOF core are shown in gray.

The heart of the model is the elementRelation . It specifies a relationship that holds between instance

models of two or moreDomains . EachDomain is a view of the meta-model, and is constituted ofClass

andassociation roles . A Role has a corresponding type that the elements bound to it must satisfy. A

Domain may also have an associated query to further constrain the model specified by it. The query may be

specified as an OCL expression. ARelation also may have an associated OCL specification. This may be

used to specify the relationship that holds between the different attribute values of the participating domains.

A binary directed-relation is a special case with asource Domain and atarget Domain . An example

transformation specification is shown in the figure5.2. It consists of two relations -ClassToTable and

AttributeToColumn . ClassToTable specifies a relationship between two domains, one being consti-

tuted ofClass and the other constituted ofTable . The OCL specification associated with theRelation

specifies the relationship between class name and the corresponding table name.

33

5. Superstructure

Table
Class

Column

AttrxCol

Attribute

attribute

owner

{tk.Table.Name = 't_'+cl.Class.Name}

{col.Column.kind = at.Attribute.kind AND

col.Column.type = if (at.Attribute.type = 'int')

'NUMBER' else 'VARCHAR'}

owner

column

<<SubRelation>>

ClxTbl

cl
 tk

at
 col

{Class.kind = 'persistent'}

Figure 5.2.:An example relation specification

5.1.1. Structuring Relations

Complex relations can be built either by composing simpler relations usingAnd andOr or by structuring them

usingSubRelation andElaboration . In the figure5.2, theAttribute to Column relation is a sub-

relation ofClass to Table relation. This specifies two things - the relationClxTbl is incomplete without

the relationAttrxCol , and the relationAttrxCol should hold for allAttributes of the corresponding

Class . These are explained in detail below and also through examples in appendixA.

5.1.2. Refinement

A set of operationalMappings may be used to refine aRelation . There may be aMapping between each

pair of domains (source and target) participating in the relation. EachMapping specifies how the target model

is obtained from the source model.

5.1.3. Meta-entity overview

We now present a brief overview of the new meta-entities in figure5.1.

Relation

Attributes
isAbstract = {true, false }
An abstract relation must be elaborated by a set of relations.

Associations
constraint → Constraint

is used to specify the relationship between attribute values of the participant domains.

relatedDomain → Domain

is used to specify the meta-model views participating in theRelation .

http://qvtp.org/ 34 QVT-Partners

5.1. Relations

client → RelationDependency

is used to structure relations by either Elaborations or SubRelations.

A relation is aSubRelation of another relation if the relationship specification of the latter is incom-

plete without the relationship specification of the former.SubRelation also has a set of associations

between the parent domain and the child domain. Intuitively, aSubRelation dependency specifies

that a relationship holds between a set of domain elements only if all the sub relationships hold between

all the reachable domain elements of the sub relations.

A Elaboration dependency specifies how an ’abstract’ relation is elaborated in terms of a set of

detailed relationship specifications at the next level. This allows a transformation specification to be

organized in a hierarchy.

And

An And relation has a set of associatedconjunct Relations . An And relation is satisfied if and only if

all of its conjuncts are satisfied.

Or

An And relation has a set of associateddisjunct Relations . An Or relation is satisfied if and only if at

least one of its disjuncts is satisfied.

Domain

A Domain identifies one component of a set of related domains participating in a relationship. ADomain is

constituted of one or more classes and associations. The same class or association may occur more than once

in a domain. The different occurrences are distinguished by means of roles.

Associations
composedFrom → ClassRole

composedFrom → AssociationRole

Specifies the class and association roles of which a domain is composed.

constraint → Constraint

Specifies further constraints on the model elements bound to the roles of the domain.

Constraints
The class roles and association roles should commute with their corresponding classes and associations.

ClassRole

Associations
type → Class

Specifies the type of the role.

embeds → ClassRole

In auto-transformations, where modifications are performed logically in-place (i.e. in the same extent),

QVT-Partners 35 http://qvtp.org/

5. Superstructure

the question arises as to what should be done with classes and associations not covered in the transforma-

tion specification. This is not an issue in cross-model (source and target extents are distinct) transforma-

tions as one is only interested in classes and associations covered in the transformation specification. One

alternative is to explicitly include all associations of a covered class in the specification, with some kind

of identity transformation. But this is cumbersome. ’Embeds’ association provides another alternative.

It specifies that all unspecified associations of an element bound to a class role are to be transferred on

to the element bound to the corresponding class role in the destination model. In effect it specifies how

mapped target model elements are to be embedded in the rest of the model.

AssociationRole

Associations
type → Association

Specifies the type of the role.

Action
This is aplug pointfor the standard Action Semantics. Our pattern matching language will translate into

the action semantics.

Mapping

A mapping is a class with a distinguished operation mapping. Instances of a mapping are sent a mapping

message along with instances of the domains of the mapping. The result is an instance of the range of the

mapping. Note that since the range type of a mapping can be a collection, it is possible for mappings to

produce multiple results.

Refinement

Relationship specifications can be refined into implementations by translating them into mappings.

Constraint

This is a standard OCL constraint but with a specific methodcheck.

5.1.4. Well-formedness rules

context AssociationRole inv:
self.end1.type = self.type.end1
and
self.end2.type = self.type.end2

context SubRelation inv:
self.subDomainPath->exists(ar:AssociationRole |

self.parent.relatedDomain.class->exists(c:ClassRole |
ar.end1 = c))

and

http://qvtp.org/ 36 QVT-Partners

5.1. Relations

self.subDomainPath->exists(ar:AssociationRole |
self.child.relatedDomain.class->exists(c:ClassRole |

ar.end2 = c))

Transformation

Transformation

Step

Transformation

Task

Relation

Constraint

1

1

1...*

*

*

*

*

previous

next

contains

step

task

specifiedBy

precedence

spec

operational

decalarative

Figure 5.3.:Transformation organization meta-model

5.1.5. Transformation organization meta-model

Figure5.3. shows a meta-model for organizing a large transformation activity into a set of transformation steps

and their flow composition. This model adds an additional operational super-structure over the declarative

relationship specifications described above.

Transformation Task is specified by a set of relations. It is a transactional unit. It can specify if the

extents of the source and target models are the same (auto) or different (cross-model).

Attributes
isTransactional = {true, false }
specifies whether a transformation task is transactional - the transformations performed in such a trans-

formation task are either committed or rolled back together.

isAuto = {true, false }
specifies whether the transformation task performs auto transformations. In an auto-transformation the

target model is the same as the source model.

5.1.6. Examples

Figure 5.4 shows the concrete syntax used in the transformation diagrams. Meta-model diagrams use UML

syntax.

QVT-Partners 37 http://qvtp.org/

5. Superstructure

Please note that the transformation diagrams also show the required OCL constraints. As explained in section

1.7.1these constraints are further augmented when the super-structure models are translated down to infras-

tructure models; these additional constraints are derived from the semantics of various relation composition

constructs.

: Relation

: Domain

: ClassRole

: AssociationRole

 { }
 : Constraint

domain1
 domain2

Figure 5.4.:Concrete syntax

Object-relational mapping

This example describes a transformation between a UML model and a RDBMS model. The sections below de-

scribe the relevant portions of the meta-models of the object and RDBMS models, their mapping requirements,

and a transformation specification that satisfies the requirements.

A sample UML meta-model

PrimiveDataType
 Classifier

Class
 Attribute

Association

type

owner

attribute

destination

reverse

forward

source

Figure 5.5.:A sample UML meta-model

A sample UML meta-model is shown in figure5.5. A class has attributes. An attribute’s type can be either a

primitive data type or another class (complex types). Classes are related to each other through Association ob-

jects. Only classes that are marked aspersistent for the propertykind are considered for Some attributes

have the propertykind set toPrimary to indicate that they are the key attributes.

A sample RDBMS meta-model

A sample RDBMS meta-model is shown in figure5.6. A table has columns. Every table has a mandatory

primary key (Key). A table may optionally have foreign keys. A foreign key refers to a primary key of another

http://qvtp.org/ 38 QVT-Partners

5.1. Relations

ForeignKey

Column

Key
Table

referredBy
 refersTo

foreignKey

owner

key

owner

owner

column

column
column

belongsTo
belongsTo

Figure 5.6.:A sample RDBMS meta-model

associated table.

Mapping requirements

A class maps on to a single table. A class attribute of primitive type maps on to a column of the table. Attributes

of a complex type are drilled down to the leaf-level primitive type attributes; each such primitive type attribute

maps onto a column of the table. An association maps on to a foreign key of the table corresponding to the

source of the association. The foreign key refers to the primary key of the table corresponding to the destination

of the association.

Transformation specification

Figure5.7shows the UML to RDBMS transformation structured as anAnd composition of two transformations

’Class to table transformation’ and ’Association to foreign-key transformation’. Figure5.8shows the detailed

specification of ’Class to table transformation’ and figure5.9shows the detailed specifications of ’Association

to foreign-key transformation’.

Class

Association
 Attribute

UMLxRDBMS

source

forward
 reverse

destination

owner

attribute

Table

Column

Key
 ForeignKey

owner

owner

owner

column

column
 column

belongsTo
 belongsTo

key

foreignkey

Class to table transformation
 Association to foreignKey transformation

And

uml
 rdbms

Figure 5.7.:UML to RDBMS mapping

QVT-Partners 39 http://qvtp.org/

5. Superstructure

Key

Class

Table
Class

Attribute

Column
AttrxCol
Attribute

owner

attribute

attribute

attribute

attribute

owner

owner

type

{Column.kind =

'Primary'}

{Attribute.type.

oclIsTypeOf

(PrimitiveDataType)}

{tk.Table.Name = 't_'+cl.Class.Name AND

tk.Key.Name = 'k_'+cl.Class.Name}

{col.Column.kind = at.Attribute.kind AND

col.Column.type = if (at.Attribute.type = 'int')

'NUMBER' else 'VARCHAR'}

{NOT

Attribute.type.oclIsTypeOf(

PrimitiveDataType)}

owner

key

owner

column

column

belongsTo

typeOf

<<SubRelation>>

ClxTbl

cl
 tk

at
 col

{Class.kind = 'persistent'}

Figure 5.8.:Class to table transformation

5.1.7. Remove multiple inheritance

In this example we transform an object model that supports multiple inheritance into an object model that sup-

ports interfaces but does not support multiple inheritance. This is given as an example of auto transformation

where a model is modified in-situ. Figure5.10shows two transformation tasksCreate Interfaces and

Remove Inheritance . Please note that the concrete syntax notation<<Task>> represents the combina-

tion of abstract syntax elements ’Transformation Step’ and ’Transformation Task’. In figures5.11and 5.12

a number in brackets represents an ’embeds’ association between the corresponding elements of the mapped

domains.

Task 1: Create Interfaces

For each class create an interface containing the same set of operations. Figure5.11shows this transformation.

Task 2: Remove Inheritance

Copy the operations of a super-class down to its sub-class and remove the inheritance. A sub-class implements

the interfaces of its super class. Figure5.12shows this transformation.

5.2. Mappings

To be completed.

http://qvtp.org/ 40 QVT-Partners

5.2. Mappings

ClxTbl

ClxTbl

AttrxCol

AssocxFKey

Class

Association
 ForeignKey

Attribute
 Column

Class

Class

source

forward

reverse

destination

owner

attribute

Key

Table

{Attribute.kind =

'Primary}

destination

reverse

foreignKey

owner

owner

column

column

referredBy

refersTo

belongsTo

owner

key

{ tk.Table.Name = 't_'+cl.Class.Name

AND tk.Key.Name = 'k_' + cl.Class.Name}

{col.Column.kind = at.Attribute.kind AND

col.Column.type = if(at.Attribute.type = 'int')

'NUMBER' else 'VARCHAR'}

<<SubRelation>>

<<SubRelation>>

Table

Key

key

owner

cl
 tk

as
 fk

col
at

{fk.ForeignKey.Name =

'f_'+as.Association.Name}

{Class.kind = 'persistent'}

Figure 5.9.:Association to foreignKey transformation

<<Transformation>>

Multiple to single

inheritance

<<Task>>

Create Interfaces

ClxIntf
 FlattenClass

<<Task>>

Remove
Inheritance

Figure 5.10.:Remove multiple inheritance (transformation organization)

QVT-Partners 41 http://qvtp.org/

5. Superstructure

ClxIntf

OpxOp

ParxPar

Operation:sc(1)

Class:(1)

Operation:tc(1)

Parameter:tio(1)

Operation:ti(1)

Parameter:tco(1)
Parameter:so(1)

operation
 operation
operation

parameter
 parameter
 parameter

{tp.tco = sp.so AND tp.tio =

sp.so}

{ci.Class = cl.Class

AND ci.Intrerface.Name = 'I'

+cl.Class.Name}

{to.tc = so.sc AND

to.ti = so.sc}

Interface

Class:(1)

implements

<<SubRelation>>

<<SubRelation>>

cl
 ci

so
 to

sp
 tp

Figure 5.11.:Create interfaces

FlattenClass

OpxOp

ParxPar

Class:ssub(1)

Operation:sc(1)

Class:tsub(1)

Operation:tc(1)

Parameter:tio(1)

Operation:ti(1)

Class:tsup(2)

Parameter:tco(1)
Parameter:so(1)

operation
 operation
operation

parameter
 parameter
 parameter

{tp.tco = sp.so AND tp.tio = sp.so}

{td.tsub = sd.ssub AND

td.tsup = sd.ssup AND

td.Interface = sd.Interface}

{to.tc = so.sc AND

 to.ti = so.sc}

Class:ssup(2)

Interface:(3)
Interface:(3)

implements
 implements

implements

{ssup.parent -> IsEmpty()}

<<SubRelation>>

<<SubRelation>>

parent

sd
 td

so
 to

sp
 tp

Figure 5.12.:Remove inheritance

http://qvtp.org/ 42 QVT-Partners

6. Superstructure translation

This section will detail the translation of the superstructure into the infrastructure. This definition will be given

in terms of our proposal in order to show the power of our proposal. The overall idea is simple: concepts

which exist in the superstructure but not in the infrastructure will be translated into infrastructure concepts,

with added OCL constraints or ASL as appropriate, in order to achieve the correct semantics. Such translations

have precedent within the OMG community: the UML2 specification is similarly split into infrastructure and

superstructure, and some submissions to UML2 such as [AD02] have given a translation from superstructure to

infrastructure.

To give a small overview of how a part of superstructure might translate into infrastructure, take a rela-

tions domains. In the superstructure, these are rich pattern matching constructs, whereas in the infrastructure

they are rather more spartan single model elements, with constraints. When translating from superstructure

to infrastructure, a translation would first strip away all the pattern matching constructs and then analyze the

resulting elements to find their most specific shared parent. This element then forms the basis of the infrastruc-

ture translation. The pattern matching constructs, and other structural information, are then translated into OCL

constraints and added into the infrastructure domain in order to recover the information which has otherwise

have been lost.

43

6. Superstructure translation

http://qvtp.org/ 44 QVT-Partners

7. Compliance points

This chapter will list compliance points which state precisely which features implementations must support and

which features implementations may optionally support.

45

7. Compliance points

http://qvtp.org/ 46 QVT-Partners

Part III.

APPENDICES

47

A. Examples

This chapter will be filled with representative examples of different types of transformations.

A.1. DOS file system to UNIX file system

A.2. Superstructure operator

A.3. Multiple to single inheritance

A.4. Classes to tables

A.5. Information system model to J2EE

49

A. Examples

http://qvtp.org/ 50 QVT-Partners

B. Glossary

ASL The Action Semantics Language (ASL) [OMG01] is an extension of UML which allows executeable

models.

Composite relation A composite relation consists of a parent relation and a number ofcomponent relations.

There are various types of composite relation. For example, the semantics of anand composite relation

are that in order for the parent relation to hold, all of the component relations must hold.

Component relation A component relation is a component in acomposite relation.

Domain Transformation are specified between a number of domains. In the infrastructure, a domain is a simple

Classifier ; in the superstructure, domains are much richer.

Infrastructure The infrastructure is the ‘core kernel’ of our definition. Not intended for end users, it provides

a simple semantic core; it is also useful for tool vendors.

Mapping A mapping is a potentially directed transformation implementations.

MOF The Meta Object Facility is the core of the OMG’s modelling work.

Pattern matching Pattern matching is a process whereby parts of a model are bound to pattern variables. The

pattern can restrict exactly what models it will match against. XSLT is an example of a transformation

language based on pattern macthing.

Query A query takes as input a model, and selects specific elements from that model.

Relation are multi-directional declarative transformation specifications.

Superstructure The superstructure is the rich part of the definition which end users use. The semantics of the

superstructure are given by its translation intoinfrastructure.

Transformation Transformation is the umbrella term forrelationandmapping.

View A view is a model that is derived from another model.

51

B. Glossary

http://qvtp.org/ 52 QVT-Partners

Bibliography

[AD02] Adaptive and Data Access. 2U revised submission to UML 2.0 Superstructure, 2002.

http://cgi.omg.org/cgi-bin/doc?ad/02-12-23 .

[ADP03] Adaptive and Data Access and and Project Technology. Unambiguous

UML (2U) 3rd Revised Submission to UML 2 Infrastructure RFP, 2003.

http://cgi.omg.org/cgi-bin/doc?ad/03-01-08 .

[BMR95] Andrew Berry, Zoran Milosevic, and Kerry Raymond. Reference model

of open distributed processing: Overview and guide to use, 1995.

ftp://ftp.dstc.edu.au/pub/DSTC/arch/RM-ODP/PDFdocs/part1.pdf .

[CEK02] Tony Clark, Andy Evans, and Stuart Kent. Engineering modelling languages: A precise meta-

modelling approach. In Ralf-Detlef Kutsche and Herbert Weber, editors,FASE 2002, volume 2306

of Lecture Notes in Computer Science, 2002.

[DSo01] Desmond DSouza. Model-driven architecture and integration - opportunities and challenges, 2001.

http://www.kinetium.com/catalysis-org/publications/papers/2001-

mda-reqs-desmond-6.pdf .

[MC99] Luis Mandel and María Cengarle. On the expressive power of the object constraint language ocl. In

FM’99 - Formal Methods, World Congress on Formal Methods in the Development of Computing

Systems, volume 1708 ofLNCS, pages 854 – 874. Springer, 1999.

[OMG01] Object Management Group.Action Semantics for the UML, 2001.ad/2001-08-04 .

[OMG02] Object Management Group.Request for Proposal: MOF 2.0 Query / Views / Transformations RFP,

2002.ad/2002-04-10 .

[W3C99] W3C.XSL Transformations (XSLT), 1999.http://www.w3.org/TR/xslt .

53

	Copyright
	Preface
	This version of the submission
	Submission contact point
	Guide to the material in the submission
	Statement of proof of concept
	Resolution of RFP requirements and requests
	Submitters
	Supporters
	Submission team

	Response to the RFP
	Introduction
	An overview of the RFP
	MDA
	Uses

	A general scenario
	Our proposal
	Queries
	Views
	Transformations
	A layered approach to the definition of transformations
	Relations, mappings and implementations
	Transformation state
	Domains
	Reusing transformations
	Pattern matching
	A simple example
	Summary

	Resolution of RFP requirements
	Mandatory requirements
	Optional requirements
	Issues to be discussed
	Relationship to Existing OMG Specifications

	Technical details
	Overview
	Infrastructure
	Abstract syntax
	Operations
	Well-formedness rules

	Semantic domain
	Semantic relation

	Superstructure
	Relations
	Structuring Relations
	Refinement
	Meta-entity overview
	Well-formedness rules
	Transformation organization meta-model
	Examples
	Remove multiple inheritance

	Mappings

	Superstructure translation
	Compliance points

	Appendices
	Examples
	DOS file system to UNIX file system
	Superstructure operator
	Multiple to single inheritance
	Classes to tables
	Information system model to J2EE

	Glossary
	Bibliography

