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Much effort in scientific visualization is put  towards  the representation  and  communication  of three-dimensional
objects.  Typically,  an  investigator  labors  in  front  of  a   graphics workstation,   twiddling   knobs   and  flipping
switches  until meaningful  views  of  the  object   are   created.    Once   the investigator  has  found  the correct
representation of the data, the problem arises of how to communicate this  three  dimensional image  using  the  two
dimensional media available.  Probably the most powerful means of communicating 3-D structure is via film or video
animation.   However,  animations  are  time-consuming and difficult to produce, and  expensive  to  reproduce.   For
wider distribution, print media are more cost-effective.

In print, 3-D structure can be communicated in a  number  of ways.  A few well-chosen views of the structure can be
presented, using perspective, shading,  transparency,  and  other  rendering techniques   to   enhance   the   photorealism
of   each  view.  Stereoscopic pairs of images can be printed, to further  aid  the perception  of the 3-D structure.  The
choice of views is made by the researcher, who may unintentionally bias the viewer towards a particular   perception  of
the  structure.   Another  approach, commonly seen in architectural graphics, is to present top, side, and  front views of
the same structure.  Here the choice of views is taken out of the hands of the presenter, providing the  viewer with  a
standard  visual  framework  to  aid  perception  of the structure.  However, the  3-D  relationships  between  the  three
views,  printed  side-by-side  on  one flat sheet of paper, still need to be mentally reconstructed by the viewer.

The approach I’d like to suggest here is to print six  views of an object, the six faces of a cube encompassing the
structure, in such a manner that a paper cube can easily be constructed from the  printed  sheets.   The  advantage  of
the paper cube is its physicality—the  viewer  can  readily   perceive   the   spatial relationships  between  parts of the
structure as seen in the six views, because the relationships between the views is encoded  by their  positions on the
surface of the cube.  The paper cube is a cheap, portable, reproducible means of  delivering  some  of  the interactive
advantages inherent in a 3-D workstation display.

The Hosoya Cube
I’d like to be able to say that I saw the need for 3-D paper hardcopy, then searched diligently for the right means to
achieve it.  In actuality, the means appeared before an end was apparent.  I  have  been  enamored  with  the  Oriental
art of origami since childhood, and have attempted a few times to produce  interesting results by folding designs I’d
printed out from my home computer.  The  relevance  of  this  hobby  to  my   day   job,   scientific visualization,
became apparent only recently.

The easiest way to construct a print for an origami  folding is  to  fold the structure out of blank paper, sketch a design
on the folded model, then unfold the paper and use the  sheet  as  a template for the final design.  My previous
endeavors in printing origami designs had shown that the  best  results  were  obtained when  the  important  faces  of
the  model  where  comprised  of contiguous areas on the unfolded sheet—faces constructed from an image  printed  in
parts  on  the  sheet never fit together well enough, due to the imprecisions inherent in paper folding.  In my search  for
a paper cube with images on each of its six faces, I concentrated on models that met this criteria.  The best model  I
found, the Hosoya cube, not only keeps each face as a whole image on the unfolded sheet, it is also one of the  simplest
to  fold.  The  Hosoya  cube is folded from two sheets of paper, producing a larger cube than one  sheet  would.   Also,
the  images  on  the unfolded  sheets  are  easily composited through scalings and 90-degree rotations of the source
images.

Generating the unfolded sheets
Each of the two sheets consists of  a  square  divided  into nine  sub-squares  (See Figures 1 & 2).  The cube faces
appear as the central square and the left and right side  squares.   If  we imagine  the  final cube centered at the origin of
a right-handed coordinate system, we can label each of the  faces  according  to the  sign  of the axis that pierces the
face (X+, X-, Y+, Y-, Z+, and Z-).  One sheet will contain the Z+ face in the center,  with the  X-  face on the left, and
X+ face on the right, each rotated so the positive Y axis  points  upward.   The  other  sheet  will contain  the  Z- face in
the center, with the Y- face on the left and the Y+ face on the right, each rotated so the positive X axis points upward.



To aid in folding, I create a square image of two diagonal lines and place rotated versions of it in  each  of  the four
corner squares of each sheet (the reasoning behind the solid and dashed lines will  be  explained  when  we  discuss
folding, below).

Listing 1 is a Unix csh script  which  uses  the  Portable Bitmap suite of tools to construct two Hosoya cube sheets from
six  images,  xm.ppm,  xp.ppm,  ym.ppm,  yp.ppm, zm.ppm,  and  zp.ppm  (similar scripts could be written for other
toolkits). The source images are renderings of  a  model  of  the human  brain  (see sidebar).  Note that some of the
images had to be rotated to obtain the proper  orientation—it  may  take  some experimentation  with  your images to
get all of the orientations correct.

#!/bin/csh
#
# Make two Hosoya cube files from {x,y,z}{m,p}.ppm and corner.pbm
# (corner.pbm contains the folding lines for the four corner squares).
#
# PJM 901214
#

# Configurable parameters
#
#  length of one side of {x,y,z}{m,p}.ppm
set side = 512
#  length of one side of corner.pbm
set cornerSide = 128

# Computed parameters
@ size = $side * 3
@ twoSides = $side * 2
@ cornerScale = $side / $cornerSide

# make empty image
pbmmake -white $size $size > 1.ppm

# Insert the corners
#  upper left
pnmenlarge $cornerScale corner.pbm > t.pbm
pnmpaste t.pbm 0 0 1.ppm > 2.ppm
#  upper right
pnmenlarge $cornerScale corner.pbm | pnmflip -cw > t.pbm
pnmpaste t.pbm $twoSides 0 2.ppm > 1.ppm
#  lower right
pnmenlarge $cornerScale corner.pbm | pnmflip -r180 > t.pbm
pnmpaste t.pbm $twoSides $twoSides 1.ppm > 2.ppm
#  lower left
pnmenlarge $cornerScale corner.pbm | pnmflip -ccw > t.pbm
pnmpaste t.pbm 0 $twoSides 2.ppm > 1.ppm

# Save this for later use
cp 1.ppm blank.ppm

# Insert the pieces for sheet A
pnmpaste xm.ppm 0 $side blank.ppm > 1.ppm
pnmpaste zp.ppm $side $side 1.ppm > 2.ppm
pnmpaste xp.ppm $twoSides $side 2.ppm > A.ppm

# Insert the pieces for sheet B
#  Note that some need to be rotated.  This is specific to the particular
#  animation script used to render these images.



pnmflip -r180 ym.ppm > t.ppm
pnmpaste t.ppm 0 $side blank.ppm > 1.ppm
pnmflip -cw zm.ppm > t.ppm
pnmpaste t.ppm $side $side 1.ppm > 2.ppm
pnmpaste yp.ppm $twoSides $side 2.ppm > B.ppm

# Clean up
ppmtorast A.ppm > A.ras
ppmtorast B.ppm > B.ras
#/bin/rm 1.ppm 2.ppm t.ppm blank.ppm A.ppm B.ppm

Listing 1

Folding the Hosoya Cube
In traditional origami, the use of scissors and measuring devices is  frowned  upon.  However, this is science, so we’re
allowed to fudge a bit.  We will  preserve  standard  origami  notation,  in which  creases  made  by  “valley”  folds  are
drawn using dashed lines, while “mountain”  creases  are  drawn  with  solid  lines.  Proper  folding technique is
important for attractive results.  A good approach to making a long fold is to pinch the paper at  the two extremes of the
fold, then work toward the center, finalizing the crease  by  running  the  fold  between  your  thumbnail  and forefinger
for its entire length.  Neatness counts.

Step 1:  Using the extreme corners of the diagonal lines  as reference marks, cut off the excess paper, leaving a
square piece of paper containing the 9 sub-squares.

Step 2:  Again using the diagonal lines as  reference,  fold the  sheet  into  9  sub-squares using mountain folds (see
Figure 3a).

Step 3:  If this were traditional origami,  we’d  next  fold each  of  the  four corners in, making valley folds along
each of the long dashed diagonal lines (See Figure 3b).  I find it easier to  cut the corners off along these lines,
resulting in a lighter cube with crisper edges.

Step 4:  We now need to make four valley folds,  along  each of  the  short dashed diagonals (See Figure 3c).
Pinch each fold at the outer edge, then work towards the center, tugging a bit on the  fold to make a sharp corner.
The result will be a cube with one missing face.

Step 5:  Repeat steps 1 through 4 with the other sheet.

Step 6:  This is the  final  assembly  step,  and  it’s  the hardest  (See  Figure  3d).  Orient the two halves in their
final configuration, and insert each half into the other  so  that  the blank  faces are inserted inside the printed faces.
This takes a little patience, but is not hard to master.



Figure 3 (figures 1 & 2 at end of document)

The Hosoya Cube as User Interface
The art of scientific visualization lies in  making  results accessible  to  the  researcher  and  student  via effective user
interfaces which facilitate the scientific process.  Research  is being done to translate the direct manipulation properties



of the physical world into the virtual world of  graphics  workstations.  The  Hosoya  cube  is  a different approach—it
takes the virtual images and folds them into a  physical  artifact  which  is  both intuitive  to  use  and  cheap  to
reproduce.  It makes a unique addition to a scientific visualization toolkit.

SIDEBAR:  The human brain
The  images  appearing  on  the  faces  of  this  cube   are renderings of a human brain created using the Wavefront
animation package.  The data was created by Dr. Robert B. Livingston of the University of California, San Diego,
Neurosciences department, in 1974-75.  A  normal  human  brain  was  encased  in  a  block  of paraffin.  Successive
thin layers were shaved off of the paraffin block, and the top of the block was photographed after each pass, resulting
in  about  100  slices  spaced  1.1 millimeters apart.  Livingston   and   others   hand-digitized   the   contours    of
neuroanatomical  structures  from  the  photographs,  creating  a database of about 25 distinct brain structures.   This
data  was used  in Livingston’s 1976 film, “The Human Brain, A Dynamic View of its Structures  and  Organizations”.
The  contour  data  was converted  into triangular meshes by Floyd Gillis at the Research Institute at Scripps Clinic in
1987.

The subset of the human brain structures  visible  in  these images  comprise over 125,000 polygons.  Each image took
about 45 minutes to compute on an Alliant FX80.  The outer objects are the cerebral   cortex  (transparent  gray),
cerebellum  (transparent magenta), and brainstem (transparent blue).  Two regions  of  the cortex   responsible  for
language  perception  and  production, Broca’s and Wernicke’s areas, are highlighted in dark  and  light blue,
respectively.   The  corpus  callosum,  a  bundle of nerve fibers connecting the left and right hemispheres of  the  cortex,
is  represented in a darker gray and is most apparent in the side views of the brain.  The large transparent yellow
structure  atop the brainstem is the thalamus, and some of the smaller structures of the interior of the brain are visible
within the thalamus  and the  brainstem  (best  viewed from the front or underneath).  The two orange almond-shaped
structures are the amygdala.
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