
Projection Matrix
Tricks

Eric Lengyel

Outline

 Projection Matrix Internals

 Infinite Projection Matrix

 Depth Modification

 Oblique Near Clipping Plane

 Slides available at
https://terathon.com/

From Camera to Screen
Camera
Space

Homogeneous
Clip Space

Normalized Device
Coordinates

Viewport
Coordinates

Projection Matrix

Perspective Divide

Viewport Transform

Projection Matrix

 The 4×4 projection matrix is really just a linear
transformation in homogeneous space

 It doesn’t actually perform the projection, but
just sets things up right for the next step

 The projection occurs when you divide by w to
get from homogenous coordinates to 3-space

OpenGL projection matrix

 n, f = distances to near, far planes

 e = focal length = 1 / tan(FOV / 2)

 a = viewport height / width

0 0 0
0 0 0

20 0

0 0 1 0

e
e a

f n fn
f n f n

 
 
 

+ 
− − − − 

 − 

Infinite Projection Matrix

 Take limit as f goes to infinity

0 0 0
0 0 0

0 0 0
0 0 0

lim 20 0 0 0 1 2
0 0 1 0

0 0 1 0

f

e
e

e a
e a

f n fn
n

f n f n
→∞

 
  
  
 =+ 

− − − −  − −    −  − 

Infinite Projection Matrix

 Directions are mapped to points on the
infinitely distant far plane

 A direction is a 4D vector with w = 0
(and at least one nonzero x, y, z)

 Good for rendering sky objects
 Skybox, sun, moon, stars

 Also good for rendering stencil
shadow volume caps

Infinite Projection Matrix

 The important fact is that z and w are
equal after transformation to clip space:

()
0 0 0

0 0 0
0 0 1 2
0 0 1 0 0

e x ex
e a y e a y

n z z
z

     
     
     =

− − −     
     − −     

Infinite Projection Matrix

 After perspective divide, the
z coordinate should be exactly 1.0,
meaning that the projected point is
precisely on the far plane:

()
ex

e a y
z
z

 
 
 

− 
 − 

1

ex z
ey az

− 
 − 
  

Infinite Projection Matrix

 But there’s a problem...

 The hardware doesn’t actually perform
the perspective divide immediately after
applying the projection matrix

 Instead, the viewport transformation is
applied to the (x, y, z) coordinates first

Infinite Projection Matrix

 Ordinarily, z is mapped from the range
[−1, 1] in NDC to [0, 1] in viewport space
by multiplying by 0.5 and adding 0.5

 This operation can result in a loss of
precision in the lowest bits

 Result is a depth slightly smaller than
1.0 or slightly bigger than 1.0

Infinite Projection Matrix

 If the viewport-space z coordinate is
slightly bigger than 1.0, then fragment
culling occurs

 The hardware thinks the fragments are
beyond the far plane

 Can be corrected by enabling
GL_DEPTH_CLAMP_NV, but this is a
vendor-specific solution

Infinite Projection Matrix

 Universal solution is to modify
projection matrix so that viewport-space
z is always slightly less than 1.0 for
points on the far plane:

()

0 0 0
0 0 0
0 0 1 2
0 0 1 0

e
e a

nε ε

 
 
 

− − 
 − 

Infinite Projection Matrix

 This matrix still maps the near plane
to −1, but the infinite far plane is now
mapped to 1 − ε

()1 2
11 0
n nn

n
ε ε − −− −     =     −     

() ()1 2 1
01 0
zn z

z
ε ε ε− − −     =    − −    

Infinite Projection Matrix

 Because we’re calculating ε − 1 and
ε − 2, we need to choose

so that 32-bit floating-point precision
limits aren’t exceeded

22 72 2.4 10ε − −≥ ≈ ×

Depth Modification

 Several methods exist for performing
polygon offset
 Hardware support through glPolygonOffset

 Fiddle with glDepthRange

 Tweak the projection matrix

Depth Modification

 glPolygonOffset works well, but
 Can adversely affect hierarchical

z culling performance

 Not guaranteed to be consistent across
different GPUs

 Adjusting depth range
 Reduces overall depth precision

 Both require extra state changes

Depth Modification

 NDC depth is given by a function of
the lower-right 2×2 portion of the
projection matrix:

2 2

1
1 0

f n fn f n fnzz
f n f n f n f n

z

+ +   − − − −    − − − −=        − −   

()
2

NDC
f n fnz
f n z f n

+
= +

− −

Depth Modification

 We can add a constant offset ε to the
NDC depth as follows:

2 2

11 0

f n fn f n fnz
zf n f n f n f n

z

ε ε+ +   − − − − − −   − − − −      =      − −     

()
2

NDC
f n fnz
f n z f n

ε+
= + +

− −

Depth Modification

 w-coordinate unaffected

 Thus, x and y coordinates unaffected

 z offset is constant in NDC

 But this is not constant in camera space

 For a given offset in camera space, the
corresponding offset in NDC depends on
the depth

Depth Modification

 What happens to a camera-space
offset δ ?

()

()

2 2

11 0

f n fn f n fnz
zf n f n f n f n

z

δ
δ

δ

+ +   − − − + −   +− − − −    =     − − +      

() ()
2 2

NDC
f n fn fnz
f n z f n f n z z

δ
δ

+  
= + −  − − − + 

Depth Modification

 NDC offset as a function of camera-
space offset δ and camera-space z:

 Remember, δ is positive for an
offset toward camera

()
()

2, fnz
f n z z

δε δ
δ

 
= −  − + 

Depth Modification

 Need to make sure that ε is big enough
to make a difference in a typical 24-bit
integer z buffer

 NDC range of [−1,1] is divided into
224 possible depth values

 So |ε| should be at least 2/224 = 2−23

Depth Modification

 But we’re adding ε to (f + n)/(f − n),
which is close to 1.0

 Not enough bits of precision in 32-bit
float for this

 So in practice, it’s necessary to use

21 72 4.8 10ε − −≥ ≈ ×

Oblique Near Clipping Plane

 It’s sometimes necessary to restrict
rendering to one side of some arbitrary
plane in a scene

 For example, mirrors and water surfaces

Oblique Near Clipping Plane

 Using an extra hardware clipping plane
seems like the ideal solution
 But some older hardware doesn’t support

user clipping planes

 Enabling a user clipping plane could require
modifying your vertex programs

 There’s a slight chance that a user clipping
plane will slow down your fragment
programs

Oblique Near Clipping Plane

 Extra clipping plane almost always
redundant with near plane

 No need to clip against both planes

Oblique Near Clipping Plane

 We can modify the projection matrix so
that the near plane is moved to an
arbitrary location

 No user clipping plane required

 No redundancy

Oblique Near Clipping Plane

 In NDC, the near plane has
coordinates (0, 0, 1, 1)

Oblique Near Clipping Plane

 Planes are transformed from NDC to
camera space by the transpose of the
projection matrix

 So the plane (0, 0, 1, 1) becomes
M3 + M4, where Mi is the i-th row of the
projection matrix

 M4 must remain (0, 0, −1, 0) so that
perspective correction still works right

Oblique Near Clipping Plane

 Let C = (Cx, Cy, Cz, Cw) be the camera-
space plane that we want to clip against
instead of the conventional near plane

 We assume the camera is on the
negative side of the plane, so Cw < 0

 We must have C = M3 + M4, where
M4 = (0, 0, −1, 0)

Oblique Near Clipping Plane

 M3 = C − M4 = (Cx, Cy, Cz + 1, Cw)

 This matrix maps points on the plane C
to the z = −1 plane in NDC

0 0 0
0 0 0

1
0 0 1 0

x y z w

e
e a

C C C C

 
 
 =

+ 
 − 

M

Oblique Near Clipping Plane

 But what happens to the far plane?

 F = M4 − M3 = 2M4 − C

 Near plane and far plane differ only in
the z coordinate

 Thus, they must coincide where they
intersect the z = 0 plane

Oblique Near Clipping Plane

 Far plane is completely hosed!

Oblique Near Clipping Plane

 Depths in NDC no longer represent
distance from camera plane, but
correspond to the position between the
oblique near and far planes

 We can minimize the effect,
and in practice it’s not so bad

Oblique Near Clipping Plane

 We still have a free parameter:
the clipping plane C can be scaled

 Scaling C has the effect of changing the
orientation of the far plane F

 We want to make the new view frustum
as small as possible while still including
the conventional view frustum

Oblique Near Clipping Plane

 Let F = 2M4 − aC

 Choose the point Q which lies furthest
opposite the near plane in NDC:

 Solve for a such that Q lies in plane F
(i.e., F·Q = 0):

() ()()1 sgn ,sgn ,1,1x yC C−= ⋅Q M

42a ⋅
=

⋅
M Q
C Q

Oblique Near Clipping Plane

 Near plane doesn’t move, but far plane
becomes optimal

Oblique Near Clipping Plane

 This also works for infinite view frustum

 Far plane ends up being parallel to one
of the edges between two side planes

 For more analysis, see Journal of Game
Development, Vol 1, No 2

Questions?

 lengyel@terathon.com

	Slide Number 1
	Projection Matrix Tricks���Eric Lengyel
	Outline
	From Camera to Screen
	Projection Matrix
	OpenGL projection matrix
	Slide Number 7
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Slide Number 15
	Infinite Projection Matrix
	Infinite Projection Matrix
	Infinite Projection Matrix
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Depth Modification
	Oblique Near Clipping Plane
	Slide Number 29
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Oblique Near Clipping Plane
	Questions?

