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Projection Matrix

 The 4×4 projection matrix is really just a linear 
transformation in homogeneous space

 It doesn’t actually perform the projection, but 
just sets things up right for the next step

 The projection occurs when you divide by w to 
get from homogenous coordinates to 3-space



OpenGL projection matrix

 n, f = distances to near, far planes

 e = focal length = 1 / tan(FOV / 2)

 a = viewport height / width
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Infinite Projection Matrix

 Take limit as f goes to infinity
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Infinite Projection Matrix

 Directions are mapped to points on the 
infinitely distant far plane

 A direction is a 4D vector with w = 0 
(and at least one nonzero x, y, z)

 Good for rendering sky objects
 Skybox, sun, moon, stars

 Also good for rendering stencil
shadow volume caps



Infinite Projection Matrix

 The important fact is that z and w are 
equal after transformation to clip space:
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Infinite Projection Matrix

 After perspective divide, the
z coordinate should be exactly 1.0, 
meaning that the projected point is 
precisely on the far plane:
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Infinite Projection Matrix

 But there’s a problem...

 The hardware doesn’t actually perform 
the perspective divide immediately after 
applying the projection matrix

 Instead, the viewport transformation is 
applied to the (x, y, z) coordinates first



Infinite Projection Matrix

 Ordinarily, z is mapped from the range 
[−1, 1] in NDC to [0, 1] in viewport space 
by multiplying by 0.5 and adding 0.5

 This operation can result in a loss of 
precision in the lowest bits

 Result is a depth slightly smaller than 
1.0 or slightly bigger than 1.0



Infinite Projection Matrix

 If the viewport-space z coordinate is 
slightly bigger than 1.0, then fragment 
culling occurs

 The hardware thinks the fragments are 
beyond the far plane

 Can be corrected by enabling 
GL_DEPTH_CLAMP_NV, but this is a 
vendor-specific solution





Infinite Projection Matrix

 Universal solution is to modify 
projection matrix so that viewport-space 
z is always slightly less than 1.0 for 
points on the far plane:
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Infinite Projection Matrix

 This matrix still maps the near plane
to −1, but the infinite far plane is now 
mapped to 1 − ε
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Infinite Projection Matrix

 Because we’re calculating ε − 1 and
ε − 2, we need to choose

so that 32-bit floating-point precision 
limits aren’t exceeded

22 72 2.4 10ε − −≥ ≈ ×



Depth Modification

 Several methods exist for performing 
polygon offset
 Hardware support through glPolygonOffset

 Fiddle with glDepthRange

 Tweak the projection matrix



Depth Modification

 glPolygonOffset works well, but
 Can adversely affect hierarchical

z culling performance

 Not guaranteed to be consistent across 
different GPUs

 Adjusting depth range
 Reduces overall depth precision

 Both require extra state changes



Depth Modification

 NDC depth is given by a function of
the lower-right 2×2 portion of the 
projection matrix:
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Depth Modification

 We can add a constant offset ε to the 
NDC depth as follows:
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Depth Modification

 w-coordinate unaffected

 Thus, x and y coordinates unaffected

 z offset is constant in NDC

 But this is not constant in camera space

 For a given offset in camera space, the 
corresponding offset in NDC depends on 
the depth



Depth Modification

 What happens to a camera-space
offset δ ?
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Depth Modification

 NDC offset as a function of camera-
space offset δ and camera-space z:

 Remember, δ is positive for an
offset toward camera
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Depth Modification

 Need to make sure that ε is big enough 
to make a difference in a typical 24-bit 
integer z buffer

 NDC range of [−1,1] is divided into
224 possible depth values

 So |ε| should be at least 2/224 = 2−23



Depth Modification

 But we’re adding ε to (f + n)/(f − n), 
which is close to 1.0

 Not enough bits of precision in 32-bit 
float for this

 So in practice, it’s necessary to use

21 72 4.8 10ε − −≥ ≈ ×



Oblique Near Clipping Plane

 It’s sometimes necessary to restrict 
rendering to one side of some arbitrary 
plane in a scene

 For example, mirrors and water surfaces





Oblique Near Clipping Plane

 Using an extra hardware clipping plane 
seems like the ideal solution
 But some older hardware doesn’t support 

user clipping planes

 Enabling a user clipping plane could require 
modifying your vertex programs

 There’s a slight chance that a user clipping 
plane will slow down your fragment 
programs



Oblique Near Clipping Plane

 Extra clipping plane almost always 
redundant with near plane

 No need to clip against both planes



Oblique Near Clipping Plane

 We can modify the projection matrix so 
that the near plane is moved to an 
arbitrary location

 No user clipping plane required

 No redundancy



Oblique Near Clipping Plane

 In NDC, the near plane has
coordinates (0, 0, 1, 1)



Oblique Near Clipping Plane

 Planes are transformed from NDC to 
camera space by the transpose of the 
projection matrix

 So the plane (0, 0, 1, 1) becomes
M3 + M4, where Mi is the i-th row of the 
projection matrix

 M4 must remain (0, 0, −1, 0) so that 
perspective correction still works right



Oblique Near Clipping Plane

 Let C = (Cx, Cy, Cz, Cw) be the camera-
space plane that we want to clip against 
instead of the conventional near plane

 We assume the camera is on the 
negative side of the plane, so Cw < 0

 We must have C = M3 + M4, where
M4 = (0, 0, −1, 0)



Oblique Near Clipping Plane

 M3 = C − M4 = (Cx, Cy, Cz + 1, Cw)

 This matrix maps points on the plane C 
to the z = −1 plane in NDC
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Oblique Near Clipping Plane

 But what happens to the far plane?

 F = M4 − M3 = 2M4 − C

 Near plane and far plane differ only in 
the z coordinate

 Thus, they must coincide where they 
intersect the z = 0 plane



Oblique Near Clipping Plane

 Far plane is completely hosed!



Oblique Near Clipping Plane

 Depths in NDC no longer represent 
distance from camera plane, but 
correspond to the position between the 
oblique near and far planes

 We can minimize the effect,
and in practice it’s not so bad



Oblique Near Clipping Plane

 We still have a free parameter:
the clipping plane C can be scaled

 Scaling C has the effect of changing the 
orientation of the far plane F

 We want to make the new view frustum 
as small as possible while still including 
the conventional view frustum



Oblique Near Clipping Plane

 Let F = 2M4 − aC

 Choose the point Q which lies furthest 
opposite the near plane in NDC:

 Solve for a such that Q lies in plane F 
(i.e., F·Q = 0):
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Oblique Near Clipping Plane

 Near plane doesn’t move, but far plane 
becomes optimal



Oblique Near Clipping Plane

 This also works for infinite view frustum

 Far plane ends up being parallel to one 
of the edges between two side planes

 For more analysis, see Journal of Game 
Development, Vol 1, No 2



Questions?

 lengyel@terathon.com
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