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Abstract. An approach to analysis on path spaces of Riemannian manifolds is described.
The spaces are furnished with ‘Brownian motion’ measure which lies on continuous paths,
though differentiation is restricted to directions given by tangent paths of finite energy.
An introduction describes the background for paths on R™ and Malliavin calculus. For
manifold valued paths the approach is to use ‘It6’ maps of suitable stochastic differential
equations as charts . ‘Suitability’ involves the connection determined by the stochastic
differential equation. Some fundamental open problems concerning the calculus and the
resulting ‘Laplacian’ are described. A theory for more general diffusion measures is
also briefly indicated. The same method is applied as an approach to getting over the
fundamental difficulty of defining exterior differentiation as a closed operator, with success
for one & two forms leading to a Hodge -Kodaira operator and decomposition for such
forms. Finally there is a brief description of some related results for loop spaces.
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1. Introduction

1.1. Analysis with (Gaussian measures. Classical differential and geo-
metric analysis is based on Lebesgue measure. The non-existence of an analogue of
Lebesgue measure in infinite dimensions is demonstrated by the following theorem:

Theorem 1.1. If pu is a locally finite Borel measure on a separable Banach space
E such that translations by every element of E preserve sets of measure zero, then
either = 0 or E is finite dimensional.

‘Local finiteness’ here means that every point of E has a neighbourhood with
finite measure. The theorem is a special case of more general results, e.g see
Theorem 17.2 of [62]. In a sense it is behind many of the mathematical difficul-
ties in 'path integration’ and has meant that infinite dimensional differential and
geometric analysis has had to develop its own techniques.

*Xue-Mei Li (Xue-Mei Hairer) has benefited from a Royal Society Leverhulme senior research
fellowship.
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The analysis proposed by Gross was based on his notion of abstract Wiener
spaces. These are triples {i, H, E} where i : H — E is a continuous linear injective
map, with dense range, of a Hilbert space (H, (, )y ) into a separable Banach space
E. (Throughout this article all the linear spaces considered will be real.) The
defining property is that there is a Borel measure 7, say, on E whose Fourier
transform 4 is given by:

(1%
A1) == /Ee‘/j”(z)du(x) =e 2

for all | € E* where j : E* — H is the adjoint of . This was a generalisation
of classical Wiener space where some analysis had been previously investigated,
particularly by Cameron & Martin e.g. see [8], and also was influenced by Irving
Segal’s work. It was shown later that all, centred and strictly positive, so-called
‘Gaussian measures’ on a separable Banach space F arise from an essentially unique
abstract Wiener space structure on F, e.g. see [14].

Classical Wiener space can be considered as the special case when F is the space
Co([0,T]; R™) of continuous maps of a fixed interval [0, 7] into R™ which start at
the origin, and H, sometimes called the Cameron -Martin space, is the space of
finite energy paths Lg’l([O, T];R™), i.e. those paths in Cy([0,T]; R™) which have
distributional derivatives in L?. The map i is the inclusion. The norm for H is
given by |h|%, = fot |h(t)|?dt, and the measure on E is the classical Wiener measure
constructed by Wiener, so that the canonical process [0, 7] x Co([0, T]); R™) — R™
given by evaluation, is the standard model of Brownian motion. Denote that
measure by P.

The starting point for Gross’s analysis was his extension of Cameron & Martin’s
quasi-invariance theorem to the case of abstract Wiener spaces and their measures

v

Theorem 1.2. Translation by an element v of E preserves sets of measure zero if
and only if v lies in the image of H. Moreover, for h € H and integrable f : E — R
we have for any t € R:

[ 1@ = [ s stiten( - o - Spi)e 0

where P : H — L?(E;R) is the Paley-Wiener map.

The Paley-Wiener map is an isometry into L? defined as the L2-limit of any
sequence, {l,}n>1 of elements in E* for which {j(l,)}n>1 converges in H to h.

For classical Wiener space it is written as o +— f0T<h(s),dJ(s)> and called the
Paley-Wiener (stochastic) integral. If E = H = R™ then P(h)(x) = (h,x)y which
accounts for the notation (h,z)y sometimes used for it in general.

The Gross-Cameron-Martin formula was given here with a parameter ¢ in order
to obtain an integration by parts formula from it by differentiating with respect
totat t = 0. If f is sufficiently regular, for example Fréchet differentiable and
bounded with bounded derivative Df : E — E*, this yields:
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Corollary (Integration by parts). For all h € H

/ Df () (i(h)) dy(z) = — / f() div(h)(z)d(z) ()
E E

where div(h) = —P(h).

Diffeomorphisms of the form = — z + ija(x) between open subsets of E where
a is a C! map into E* were shown by H-H Kuo to also preserve sets of measure
zero. This led him, starting in his thesis, and then others, to the study of abstract
Wiener manifolds: Banach manifolds modelled on the space E of an abstract
Wiener space whose interchange of charts were of Kuo’s form, [42]. Such manifolds
have a natural class of Borel measures, locally equivalent to ~, and many of the
usual constructions and results of the finite dimensional situation go over to them,
[43], [20], [18], [55].

For any abstract Wiener space the map i is compact. It follows that the deriva-
tives of transformations of Kuo’s type are linear maps which differ from the identity
by a compact operator. This implies that abstract Wiener manifolds are Fredholm
manifolds, [18]. For a wide class of Banach spaces E the theory and classification
of such manifold structures showed that every separable metrisable manifold M
modelled on F can be given the structure of an abstract Wiener manifold, with
the K-theory of M playing the major role in their classification, [17].

It soon became clear that although interesting manifolds, such as path and loop
spaces on finite dimensional manifolds admit these structures, in most interesting
cases there is no natural one. Exceptions are finite codimensional submanifolds of
abstract Wiener spaces, such as the space of paths from one submanifold embedded
in R™ to another. Also see [32]. More general transformations preserving sets of
measure zero were described, notably by Ramer in 1974, and then using Malliavin
calculus by Kusuoka in 1982, and for flows of a class of vector fields on classical
Wiener space by Driver, [12]. However the form of these transformations is not so
different from those of Kuo, though the identity map in the decomposition may
be replaced by a ‘rotation’. See [61]. This together with the advent of Malliavin
calculus, in 1976, with emphasis on mappings determined by stochastic differential
equations, led to a move away from this approach, or at least a major modification
of it [44], [45].

In [36] Gross shows that for any abstract Wiener space {i, H, E'} there is an
abstract Wiener space {i’, H, E'} and a compact linear map k : £/ — E such
that ¢ = k o4’. In other words, in the infinite dimensional case the measure
can be considered to lie in a smaller space than E; (however H itself has measure
zero). In the classical case this is demonstrated by the fact that the space of
continuous functions can be replaced by the closure of Lg’l in the space of Holder
continuous functions of exponent « for any 0 < o < 1/2. In Malliavin calculus
on these linear spaces the space E loses its importance, and in some treatments
essentially disappears, e.g. see [39], and [50]. In the latter it is the Paley-Wiener
functions, {P(h) : h € H} which play the dominant role, returning to Segal’s ‘weak
distribution’ theory, [57]. However in the non-linear case of diffusion measures on
path spaces of manifolds it seems necessary, at least at the moment, to deal with
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the actual manifold on which the measures sit, though this could be taken to be
Holder continuous paths rather than continuous paths if that is more convenient.
The treatment of Malliavin calculus below is organised with this in mind.

1.2. Malliavin calculus on E. From Gross’s work, especially [35], it was
clear that the basic differentiation operator on an abstract Wiener space should be
the H-derivative. This could be defined on a basic domain, Dom(d ), of functions
f+ E — R consisting of a set of Fréchet differentiable functions which is dense in
L? and whose H-derivatives: dyf : E — H* given by dg f.(h) = Df(x)(i(h)) lie
in L7, for all 1 < p < co. The integration by parts formula, equation (2), implies
that dp is closable as a map between LP spaces with closure a closed linear map

d:Dom(d) C LP(E;R) — LP(E; H").

Let IDP"' denote Dom(d) with its graph norm.

Our Paley-Wiener functionals, P(h), are easily seen to be in ID?"! for all 1 <
p < oo with dP(h).(k) = (h,k)y for all x € E and k € H, despite their lack of
continuity in F. In fact the main point of the theory is that, for classical Wiener
space, more general stochastic integrals and solution maps of stochastic differential
equations, as described below, all lie in these Sobolev spaces.

The following characterisation of IDP! for 1 < p < co was given by Sugita:

Theorem 1.3 ([60]). If f € LP(E;R) then f € D' if and only if both of the
following hold

1. For each h € H there is a function f, : E x R — R which is absolutely
continuous in the second variable and has fr(x,t) = f(x+1th), for almost all
x € E, for each t € R.

2. There exists df € LP(E; H*) such that for any h € H, 1(f(z + th) — f(z))

converges in measure to dfy(h) ast — 0.

From this we see that the spaces D!, for 1 < p < oo are independent of any
reasonable choice of initial domain Dom(dy). A comforting fact; but one which
is still open in the corresponding situation for paths on curved spaces, as will be
described below.

For functions with values in a separable Hilbert space G the spaces IDP'' (E; G)
are defined in the analogous way, with the derivative df now mapping E into
Lo(H;G), the space of Hilbert-Schmidt operators of H into G. This is a Hilbert
space often identified with the completed tensor product G ® H. It occurs because
a basic property of an abstract Wiener space is that any continuous linear map
from E to a Hilbert space G, such as Df(x) if f : E — G is Fréchet differentiable,
gives a Hilbert-Schmidt operator when composed with i, e.g. see Thm 17.3 in [62].
We can iterate this procedure to obtain higher order Sobolev spaces.

As usual the gradient can be defined for functions in ID”!,1 < p < oo, by
(Vf(x),hyy = dfz(h) to give an H-vector field, Vf : E — H. It is a closed
operator between the LP spaces with the negative of its adjoint denoted by div, a
closed operator from Dom(div) in LY(E; H) to LY(E;R), where ¢ is the conjugate
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of p. Similar we have the adjoint d* of d. From this we get the analogue of the
(Witten) Laplacian, or the ‘Ornstein-Uhlenbeck operator’, £ = divV = —d*d. In
the case E' = H = R" this is given by:

L(f)(x) = Af(x) = Df(x)(x)

for A the usual Laplacian (with negative spectrum) of R™.

The Ornstein -Uhlenbeck operator acting on L? is the well known operator
whose spectrum consists of 0 as unique ground state, together with the negative
integers as eigenvalues of infinite multiplicity, corresponding to the homogeneos
chaos decomposition of L?(E;R), and conjugate to the number operator of math-
ematical physics acting on the real symmetric Fock space. For example from above
we see that for h € H the map P(h) is an eigenvector of eigenvalue minus one (so
giving the ‘one-particle’ space). For more, see for example [37], [53], or [38].

For classical Wiener space an H-vector field V : Cy — Lg’l is said to be non-
anticipating if for each time t its value V(c); at the path o depends only on the
restriction of o to the interval [0, 7). If this holds and it is in L?, then it is in the
domain of the divergence operator and div(V)(o) is precisely the negative of the
Ité stochastic integral, fOT V(o) do(t), as shown by Gaveau. This is the integral
which is the basis of stochastic calculus. In the anticipating case it is the Skorohod,
or Ramer-Skorohod integral, now by definition: although here the word ‘integral’
can be misleading since, as in finite dimensions, differentiation may be involved,
[53].

An L?-deRham and Hodge-Kodaira theory was given in this context by Shigekawa
[58]. The k- forms were ‘H-forms’, i.e. maps from E into A¥H where AF denotes
the Hilbert space completion of the k-th exterior power, with the exterior derivative
being a closed operator derived from our H-derivative d. The Hodge decomposi-
tion was just as in finite dimensional, standard, L2-theory, and Shigekawa proved
a vanishing theorem, implying the expected triviality of the deRham cohomology.
A theory of finite co-dimensional forms was proposed by Ramer in his Thesis,
in the context of abstract Wiener manifolds; further developments were made by
Kusuoka, [46], but more is needed to develop the theory, even on domains in these
linear spaces.

2. Scalar analysis on paths in M

2.1. Brownian motion measure and Bismut tangent spaces.
Consider a smooth manifold M. For a fixed time T' > 0, and a fixed g € M let
Cy, ([0,T7; M), or simply C,,, denote the space of continuous paths o : [0,T] — M
starting at xg, together with its usual C*° Banach manifold structure, e.g.see [19]

r [54]. The tangent space T,C,, to Cy, at a point o can be identified with the
space of continuous paths v : [0, 7] — T'M into the tangent bundle to M, such that
v(0) = 0 and v(t) € T, M for 0 <t < T. For a complete Riemannian manifold
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the Brownian motion measure, fiz,, on Cy, is the unique Borel measure for which

j=k—1
,u'zo({o—eczo :U(tj) EAjaj:]-aQa-"vk}) :/A /A [4 H ptj+1—t_7'(xj§dxj+1)
1/ Az n

j=0
(3)

where 0 = ¢y < t; < -+ <ty < T, the A; are Borel subsets of M, and the
measures p;(x, dy) are the heat kernel measures: p;(x,dy) = pi(x, y)dy for pi(x,y)
the fundamental solution of the heat equation % = %A for A the Laplace Beltrami
operator, div grad, of M.

For simplicity we shall assume that M is compact. Let its dimension be n.

From the successes of the flat space case it was expected that, to do analysis
on the path space C,, using Brownian motion measure, the differentiation should
only take place in a special set of directions. In the case of Gaussian measures on
linear space a natural choice was given, as described above, by the linear structure
together with the measure: but there are other choices as we see in section 2.3 below
and it is not clear if the measure plus the differential structure does determine a
special one, c.f. [21]. Nevertheless a natural choice for Brownian motion measure
is the Bismut tangent spaces. These are Hilbert spaces, H,, of tangent vectors,
defined for almost all o € Cy, by

Mo = {v € T,Cay : (J/) " (-) € L>1([0,T]; Ty M)} (4)

where //; denotes parallel translation along o using the Levi-Civita connection.

Because our paths o are typically so irregular, e.g. almost surely a-Holder
continuous only for @ < 1/2, the parallel translation has to be constructed by
stochastic differential equations and so is only defined along almost all paths.
However if we set H = U, H, C TCy, we will see that it has the rudiments of a
bundle structure. We will call its sections H-vector fields, and the sections of its
dual bundle H* will be called H-one-forms, c.f. [40].

In [12], Driver extended Cameron-Martin’s theorem and the formulae (1), and
(2) to this situation, showing that if V" is the H-vector field whose value at o
is obtained by parallel translation of a fixed element h € L**([0,T]; T, M) along
o then this measurable vector field has a solution flow which preserves sets of
ao-z€r0o, With consequent analogues of equations (1) and (2).

As for flat space the integration by parts formula gives closability of the H-
derivative dy : Dom(dy) — L?T'H* from its domain in L? into the L* -H-one-
forms. It works for the LP-spaces but we shall only mention L? from now on for
simplicity. A natural, essentially the smallest natural, domain to choose is to let
Dom(dy) be the space Cyl(M) of smooth cylinder functions: those maps of the
form o — F(o(t;),...0(t;)) for some smooth F' defined on the k-fold product of
M, some 0 < t; < --- <t <T, any natural number k. Other choices include the
space of (Fréchet) C1- functions which are bounded together with their derivatives,
using the natural Finsler metric on Cy,. However this time we do not know if these
lead to the same domain for the closure of dg, see [26, 27].

We must make a choice, and will choose Cyl(M) as basic domain. With this
choice let ]Dz’l(CmO), or ID*!, denote the domain of the L?-closure of dj with its
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graph norm, with ]DQ’l(CxO; @) for the corresponding space of G-valued functions,
G a separable Hilbert space. Let d denote the closure of dg, so if f: Cyy — G is
in D*!(C,,; G) then df is an L?-section of Lo(H;G) the ‘bundle’ with fibre at o
the space of Hilbert-Schmidt maps of H,, into G, sometimes denoted by G ® H.

With this we get a closed operator V as usual, mapping its domain ID%! into
H-vector fields, with adjoint the negative of a closed operator div. As usual we
have a self adjoint ‘Laplacian’, or ‘Ornstein-Uhlenbeck’ operator £ acting on func-
tions, defined by £ = divV = —d*d. The associated Dirichlet forms and processes
have been studied, e.g. [13], [15]. Norris devised a stochastic partial differential
equation to construct associated ‘Brownian motions’ or ‘Ornstein-Uhlenbeck pro-
cesses’ on these path spaces, treating them as two parameter M-valued processes,
[52]. The existence of a spectral gap for £ was proved by S. Fang, and Log Sobolev
inequalities independently by E. Hsu and Aida & Elworthy, see [37], [22]. However
little, if anything, appears to be known else about its spectrum.

To discuss higher derivatives it is convenient to have a ‘connection’ on H in order
to differentiate its sections. The most obvious choice is to use the trivialisation
of H obtained simply by parallel translating every element in each H, back to an
element of L**([0,T]; Ty, M), so that H-vector fields can be considered as maps
of Cy, into L**([0,T); T,y M) to which we may try to apply our closed derivative
operator d. This approach was used effectively, for example in [47]. However it does
not conserve the Ciq([0,T]; GL(n))-structure of our path space, nor as Cruziero&
Malliavin pointed out, does it fit well with the underlying ‘Markovianity’ of our
set up. This led them to the ‘Markovian’ connection, see [11], a modification of
which we will describe below.

2.2. Ito6 maps and the stochastic development. The stochastic de-
velopment map D : Co([0,T]; Ty M) — Cy, is an almost surely defined version
of the Cartan development, describing ‘rolling without slipping’ along smooth
paths. Its inverse is given by D~1(o)(t) = fot(//t)_1 o do(t), where the integral
is a Stratonovitch stochastic integral, and //; refers to parallel translation along
the path o, (defined for almost all paths). Reformulating Gangolli, [33],[18], it
was shown by Eells & Elworthy that it sends Wiener measure to the Brownian
motion measure. A fundamental result of Malliavin calculus is that, for each time
t the map can be H-differentiated infinitely often in the Sobolev sense. This was
used by Driver to transfer his results about flows of vector fields, and integration
by parts formulae, from flat space to Cy,, see [12] where background details are
included. However the use of D as a chart was limited because its H-derivative
does not map L*'([0,7]; T, M) to the Bismut tangent spaces. Furthermore from
[49] it now seems that, unless M is flat, composition with D will not pull ele-
ments in ID*'(C,,) back to elements in the domain of d: there will be a loss of
differentiability.

An alternative technique is to use the solution maps, Ité maps, of more sim-
ple stochastic differential equations as replacements for charts. For this take a
(Stratonovich) stochastic differential equation

dzy = X () o dBy + A(xy)dt (5)
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on M. Here A is a smooth vector field and X gives linear maps X (z) : R™ —
T,M, smooth in x € M. Also B is the canonical Brownian motion given by
B; : Cy([0, T]; R™) — R™ with B(w) = w(t) for Co([0,T]; R™) furnished with its
Wiener measure, which we shall now denote by P.

The solution z; : Co([0,T]; R™) — M to such an equation, starting from z,
can be obtained by ‘Wong-Zakai approximation’: taking piecewise linear approx-
imations B} to the Brownian motion, for each partiition IT of [0,7], and solving
the family of ordinary differential equations

da'(w)
dt

dBM(w)
dt

= X(z' () + Az (w))
starting at xg, for each w. The required solution z; is given by x(w) = Z(w); for
the limit in probability of z* : Cy([0, T]; R™) — C,, as the mesh of II goes to zero.
The map 7 is the It6 map. To be precise we have to choose it as a representative
from an almost sure equivalence class of measurable maps. However, as with the
stochastic development these maps can be differentiated arbitrarily many times
in the sense of Malliavin calculus. In particular for almost all w there is a linear
H-derivative T,Z : H — Tr(,)Cy,-

The solutions to equation (5) form a Markov process with generator A where

1 m
A:§Z£Xjﬁxj + L. (6)

Jj=1

For them to be Brownian motions we need A = 1A which requires each X (z) :
R™ — T,M to be surjective and induce the given Riemannian metric on the
tangent space, or equivalently for the adjoint Y, : T,M — R™ of X(z) to be a
right inverse of X (). Given that, we may choose the vector field A appropriately.
Then Z will map the flat Wiener measure P to our Brownian motion measure
Ha,- In general the dimension, m, of the space on which the driving Brownian
motion runs, will be larger than that of M so that Z will not be injective. The
disadvantage of this can be reduced by ‘filtering out the redundant noise’ and to
do this successfully we need to note that our SDE for Brownian motion determines
a metric connection,@ on T'M by using X to project the trivial connection on the
trivial R™-bundle onto T'M: for a vector field U and tangent vector v € T, M the
covariant derivative of U in the direction v is given by

VU = X (@) (dly = VU @)(v)). (7)

It follows from Narasimhan & Ramanan’s theory of universal connections that
every metric connection on T'M can be obtained by a suitable choice of X, see
[22], or [56] for a direct proof. To obtain the Levi-Civita connection we can use
Nash’s theorem to take an isometric embedding j : M — R"™ for some m and
then set X (x) = (dj)%, the adjoint of (dj),. With A = 0 the resulting ‘gradient’
SDE has Brownian motions as solutions as required. For Riemannian symmetric
spaces it may be useful to use the homogeneous space structure; for example if
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M is a compact Lie group with bi-invariant metric we may take R™ to be a
copy of the direct sum g @ g of the Lie algebra, g = TiqM, of M with itself and
define X (x)(e,e’) = TR, (e) — TL,(e') with A = 0, where TR, and TL, are the
derivatives of left and right translation by z, [22].

One basic result, extending estimates in [4], which contrasts with the stochastic
development is:

Theorem 2.1 ([27]). Suppose the connection V induced by the SDE is the Levi-
Civita connection. The the pull back by I of cylindrical one-forms on Cy, extends
to a continuous linear map I* : L*H* — L?(Co([0,T);R™); H*) of L? H-one-
forms on Cy, to those on the flat path space.

Here for a cylindrical, or other one form, ¢, on C,,, the pull-back H-form Z*(¢)
is given by Z*(¢) (k) = ¢(T.,Z(h)) for h € H. However, in general the H-derivative
T7 does not map H into the Bismut tangent spaces and so for H-one-forms ¢ the
pullback does not have a classical meaning, though it does have an expression as
an It6 integral under our condition on V. If V were not the Levi-Civita connection
this integral would be a Skorohod integral with a consequent loss of differentiability
expected, as for the stochastic development map in [49]. There is an important
equivalent dual, or ‘co-joint’, version to this result. For this suppose o : Cpy — H
is an H-vector field in L?. For almost all o € C,, we can ‘integrate over the fibre
of 7" at o to obtain TZ(«), € T,C,,. Mathematically that is achieved by taking
the conditional expectation with respect to the o-algebra F*° on C,, generated
by Z:

TZ(a), = B{TZ(a(-)) | Z(-) = o}.

Theorem 2.2 ([27]). Suppose the connection V induced by the SDE is the Levi-
Civita connection. Then for all H-vector fields o in L?, we have TZ(a), € H,

almost surely, giving a continuous linear map TZ(—) : L?(Cy,; H) — L*H.

When « is constant, with value h say, we write T1,(h) for TZ(«),. This map
was known earlier, [22], to map H isomorphically onto H,, with our assumption
on V. In fact it has the explicit expression:

T1,(h); = W(X(o(=))h) (8)

where W : L2([0,T]; TM) — 'H is an isomorphism of the Bismut tangent ‘bundle’,
where defined, with the L?-tangent bundle L*T'C,, of Cy,:

L’T,Cyy = {v:[0,T] — TM such that v(t) € T, )M, 0<t<T

T
and/ \v(t)|3(t)dt<oo}.
0

The isomorphism is the inverse of the ‘damped derivative’ along the paths of Cy,

D D 1
5= %+§Ric#:H—>L2TCxU (9)
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where Ric# : TM — TM corresponds to the Ricci curvature.

It is convenient to give H the Riemannian metric and bundle structure it in-
herits from this isomorphism with the bundle of L? ‘tangent vectors’. The latter
is a smooth Hilbert bundle over Cy,, with structure group C4([0, T]; O(n)). It also
has a natural metric, ‘Levi-Civita’, connection, the ‘pointwise connection’ induced
from the Levi-Civita connection on M, [19]. Moving this to H by W gives a metric
connection which is easily seen to be that projected onto H by TZ, in the same way
as we defined V. This connection agrees with the ‘damped Markovian’ connection
of Cruzeiro & Fang, see [9], referred to above. It can be used to define higher
order derivative operators and Sobolev spaces, and Sobolev spaces of sections of
H, e.g. D*'H, the domain of the L2-closure of the covariant H-derivative acting
on sections of H. The latter is shown to be in the domain of div in [27]: a result
proved by M. & P. Kree for classical Wiener measure in 1983.

We can define an L2-function f : C,, — R to be weakly differentiable if it is
in the domain of the adjoint of the restriction of div to D**H. Let W2! denote
the space of such functions with its graph norm. Thus for f € W21 there exists
df € L*H* such that if V € D*'H then

[ t@dieVdun, =~ [ &),
Cuy Cap
For paths on R™ it follows from [60] that weak differentiability implies differen-
tiability, in our Sobolev sense.
We have the following intertwining result:

Theorem 2.3 ([27]). Suppose the connection V induced by the SDE is the Levi-
Civita connection. Then f € W2 if and only if f o T € D*'Cy([0,T];R™) and
composition with T gives a continuous linear map of W21 onto the space ]D?&io
of those elements in ID**Cy([0, T); R™) which are F*°-measurable. Moreover for
f € W2 we have

d(foT) =T*df.

Preliminary versions of some of the above results were given in [24]. A fun-
damental question is whether W2! = ID*!. Applying results of Eberle, [15], it is
shown in [27] that this equality holds if and only if Markov uniqueness holds for
the operator £ defined above but with domain Cyl(M). Markov uniqueness is a
weaker notion than essential self-adjointness. Probabilistically it relates to unique-
ness of solutions to the martingale problem, and it essentially means that there
is a unique extension which generates a Markov semigroup. Equality would also
imply the independence of ID*! from the choice of initial domain Dom(dg). We
do not know of any non-flat manifolds M for which an answer is known to these
questions. A positive answer would follow from a positive answer to the following:

o If f € D*'Cy([0,T];R™) is its conditional expectation E{f|F%} also in
D*"?
This is described concisely in [26], and in detail in [27], describing some partial re-
sults and correcting claims made in our 2004 Comptes-Rendues note. A discussion
somewhat related to the above question, by Airault, Malliavin & Ren, is in [5].
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2.3. More general diffusion measures. Let A be a smooth diffusion
generator on M i.e. it is a semi-elliptic second order differential operator with no
zero order term, acting on real valued functions on M. Essentially as for the case
A= 1A, there is an induced measure p7l on Cy,.

To extend the previous results to do analysis with such a measure we will
suppose the principal symbol oA : T*M — TM of A has constant rank, and so
has image in a sub-bundle E of T'M. This is equivalent to requiring that A has a
Hormander form, as equation (6), with the vector fields X7 being sections of E.

In general there is now no obvious choice of a connection with which to define
‘Bismut tangent’ spaces. We therefore choose any metric connection on E and
as before, using Narasimhan & Ramanan’s theorem, take a stochastic differential
equation (5) for which the induced connection V on E is that chosen one, and for
which (6) holds. To define the the Bismut tangent spaces it is convenient to use
the adjoint semi-connection, %, which allows differentiation of all smooth vector

fields, but only in E-directions. It is defined by
%U(x)v = §V($)U + [U, V](IE) el M

for U a section of E and V' a vector field on M, [22].

Adjoint connections were used in a similar way in order to use different Bismut
tangent spaces for Brownian measures, by Driver in [12]. The adjoint of the Levi-
civita connection is itself; that of the flat left invariant connection on a Lie group
is a flat right invariant connection. For more examples see [22]. Semi-connections
are also called ‘partial connections’ or ‘E-connections’. A

We now define ‘H, to be the set of those v € T,C;, for which %(v) S
L3([0,T); E) where

D D 1_~ o

E = a + iRiC# —-V_A (10)
where the covariant differentiation is done using the semi-connection while Ric# :
TM — FE corresponds to the Ricci curvature for V. If A does not take values in E
then this operator needs special interpretation, [22]. Since L?([0,T]; E) (| L2*TC,
is a smooth Hilbert bundle, as for the case E = T M, with pointwise connection
induced from @, we can induce all this structure, at least almost surely, on H.
When there is a metric on TM to which the semi-connection, V, is adapted the
theory goes essentially as before, [27]. If not there may be some loss of integrability
in the intertwining, for example, but the operator £ has a spectral gap; indeed there
is a Log Sobolev inequality, [22]. The Dirichlet forms which arise in this situation
are discussed in [28].

3. Towards an L? deRham-Hodge-Kodaira Theory

3.1. The spaces of H-forms. Following Shigekawa’s rather complete L2-
deRham theory for H-forms on abstract Wiener spaces it would be natural to
base such a theory on sections of the dual bundles to the exterior products A*H
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of the Bismut tangent bundle, using the Hilbert space completion of the exterior
powers of each H,. However this runs into difficulties even at defining the exterior
derivative of an H one-form, ¢, say: Recall that the standard formula for the
exterior derivative d¢ is

dp(U(z) AV (2)) = Ly (¢(V (=) (@) = Lv (¢(U(-))) (@) — ¢(IU, V](z))

for vector fields U and V. However if U and V are H-vector fields their bracket
need not be and so if ¢ is an H-form the last term in the expression above will
not in general be defined. One way round this is to interpret this final term as a
stochastic integral, in general a Skorohod integral. This was carried through by
Léandre in [47] where he obtained a deRham complex in this situation and for loop
spaces, proving that the resulting deRham cohomology agrees with the topological
real cohomology. However this was not really an L? theory and did not include a
version of the Hodge-Kodaira Laplacian.

A proposal made in [24] was to modify the definitions of k-forms by replacing
the spaces AFH by Hilbert spaces H*¥), for k = 1,2,..., continuously included
in the projective exterior powers A¥T'C, . For the ‘projective exterior powers’
the completion is made using the largest cross norm and the usual, geometric,
differential forms are sections of the dual bundles (A*T'C,,)*. Our H-k-forms will
be sections of the dual bundles H*)*.

To define H¥), for simplicity we will deal only with the case of Brownian motion
measures and Levi-Civita connections. The more general situation is touched upon
in [25]; for details of the following see [23]. Take an SDE as in section 2.2 with
corresponding Itdé map Z. It is shown that the map hy A -+ A hy — T,Z(h1) A
-++AT,(hg) determines a continuous linear map ATLT : NFH — /\’“TI(W)C’I0 from
Hilbert space to Banach space. As done in section 2.2 integrate over the fibres of
7 to define

NZ,: A\"H — NFT,Cy,

for almost all o € C;,, by the conditional expectation:
ATZ,(h) = E{A*TZ(h)|T = o}

for h € AFH. We then let H((,k) be the image of ATZ, with its quotient Hilbert
space structure. Thus H") = H. As with the case k = 1 these spaces depend only
on the Riemannian structure of M, not on the choice of SDE we used to construct
them (provided V is the Levi-Civita connection).

For k = 2 there is a detailed description. For thislet R : A2TC,, — L(H;H) be
the curvature operator of the damped Markovian connection on H, see Section 2.2,
and let T : H x H — 'H be its torsion. We have

HP = {U e A°TC,, : U —TR(U) € A’H}

with inner product having the norm |U|y2 = |U — IR(U)|a2%. Alternatively, in-
verting Id —IR, we have

H> ={V+Q(V):V e AN*H}
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where the linear map Q can be expressed in terms of the curvature of M and
involves a ‘damped translation’ of 2-vectors on M where the damping is by the
second Weitzenbock curvature, just as the first, the Ricci curvature, appears in
equation (9). It turns out that ‘ div ’Q(uAv) = 3T (u,v) for any bounded adapted
H-vector fields u and v in the sense that for any smooth cylindrical one-form ¢ on

Cy, we have

1
L, 40QA ey = =5 [ o)

0

This relates to a result of Cruzeiro-Fang, [10], that for suitable v and v the torsion
T(u,v) has ‘divergence’ zero, in the corresponding sense.

If we define the exterior H-derivative as usual on cylindrical one forms ¢ but
restrict the resulting (dy¢), : A*TyCry — R to HP we obtain a map, with
domain the smooth cylindrical one forms, into the L? H two-forms, L? H®™. The
cylindrical one forms when restricted to H* form a dense subspace of L>H* and it
turns out that this map is closable as an operator on L?H*. We obtain a closed
exterior derivative operator

d" : Dom(d) € L*H* — L*H®"

with a dual operator div : Dom(div) ¢ L*H(?) — L*H.

The covariant derivative determined by the damped Markovian connection on
H can be considered as a closed operator V from its domain, ID*'H, in L?*H to
L?(H®H) and so has an adjoint V*. The following suggests that our construction
is a natural one, but the condition of adaptedness on the vector fields is essential:

Proposition 3.1 ([23]). Let u and v be bounded and adapted H-vector fields on
Cy,. Suppose u,v € D*YH then u A v € Dom V* and

V*(uAv) = div <(Id +Q)(uA v)).

It turns out that the exterior product ¢! A ¢? of two H-one-forms can be con-
sidered as an H-two-form in a consistent way. Essentially this is because although
an element in some ’Hg) is not in H, ® H,, a space which can be identified with
the Hilbert-Schmidt maps on H,, it can be identified with a bounded linear map
on H,, and elements of the uncompleted tensor product of H, with itself act as
linear functionals on the bounded linear maps. We have then:

Proposition 3.2 ([23]). Suppose f € D*'(C,,;R) and ¢ is a bounded H-one-
form which is in the domain of the exterior derivative, and is bounded together
with d¢. Then f¢ is in the domain of the exterior derivative and

d'(fo) =df N+ fd'o.
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3.2. A Hodge-Kodaira decomposition for one and two forms.
The key step to prove closability of the exterior derivative on these H-k-forms

is to prove an analogue of Theorem 2.2. We would like a rich set of L? maps
h: Cyy — AFH such that

ARTZ(h), == B{\*TZ(h)|T = o} € HP

almost surely. For k = 1 this holds for all such A by Theorem 2.2. For k = 2 it is
claimed for an adequately rich family in [23], for all relevant It6 maps, and for all h
if the It6 map is defined via a symmetric space structure. It is unknown for higher
k largely because of the apparently complicated algebraic structure of the spaces
H®*) for higher k. (On the other hand in [25] it is shown that an important class
of k-vector fields, defined for k = 1,..,n — 1 are L? sections of H*), when k = 1, 2:
these are important in the sense that they give integration by parts results, or
generalised ‘Bismut-formulae’, for the finite dimensional exterior derivatives dP;¢
of the the heat semigroup on forms on M in terms of a path integral of ¢ itself.)

From these results for £ = 1,2 we have now closed operators
d* : Dom(d*) ¢ L’TH™ — L2rH*+D

for k = 1,2 with d?d* = 0. This leads to the Hodge-Kodaira decomposition:

LTH* = Im(d*=D) ® Tm((dF)* & (ker d* N ker(d*~1)*) (11)

for k = 1,2, as given for k = 1 in [24], and for k = 2 in [23]. Here d° refers to
d, and in the case k = 1 the image of d is closed by Fang’s theorem, e.g. see the
Clark-Ocone formula in [22]. Moreover we have self-adjoint operators (d*)*d* +
d*=1(d*=1D)* acting on the spaces of L?> H-k-forms for k = 1,2. For k = 1 the
decomposition plus Fang’s theorem shows that the space of L? harmonic one-forms
represents the L? deRham cohomology group of H-one-forms.

3.3. Lie groups with flat connection. At present we have no infor-
mation about even the first L? deRham group for non-flat manifolds. However
in [31], Fang & Franchi considered the case where M is a compact Lie group G
with bi-invariant metric. For the Bismut tangent spaces coming from a right in-
variant flat connection the natural It6 map to use is that of a left invariant SDE
dxy =TLy, odB; for B a Brownian motion on the Lie algebra g. There is no ‘re-
dundant noise’ and the derivative of the It6 map maps the Cameron-Martin space
into the Bismut tangent spaces, and its exterior powers onto those of the Bismut
spaces. There is no problem with the definition of the exterior derivative and they
showed that the It6 map can be used to transfer Shigekawa’s results for classi-
cal Wiener space, determining a Hodge-Kodaira decomposition, and giving the
vanishing of L? harmonic forms and so of the corresponding deRham cohomology
groups.
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4. Loop spaces

We have not extended the Itd6 map techniques described above in any systematic
way to the case of loop spaces, (but see [1]), and here will only briefly describe
the basic set up and some relevant results. The surveys [48] and [2] give more
information and references. Special motivation for the development of analysis on
these spaces has come from the loop space approach to index theorems, as in [7],
and the Hohn-Stolz conjecture, [59]. However note that this theory is based on
tangent spaces of vectors which are in some sense in L?! and it is not clear that
this is always what is relevant to some physical or topological situations, e.g. see
[32].

On the space of based loops, or more generally on the spaces Cy, ,, of contin-
uous paths o : [0,T] — M with 0(0) = z¢ and o(1) = yo, for yo € M, a natural
measure to take is the Brownian Bridge measure, [i,,y,, obtained by conditioning
Brownian motion from zy to be at yo at time T. If equation (5) has solutions
which are Brownian motions then the equation:

dby = X (bs) o dBy + A(be)dt + 7 log pr—¢(be; yo)dt (12)

will have It6 map which sends Wiener measure to fiz, 4,. Here p;(z,y) is the heat
kernel as in section 2.1.

For the space L(M) of free loops, i.e of continuous o : S* — M, there is
Bismut’s measure, pr, which can be defined as fM (Y, Y)fby,y dy with T' = 27,
[7]. This measure is invariant under the action of S'. A variant of this when M
is a Lie group is to average using normalised Haar measure rather than the heat
kernel. Either of these loop spaces could be furnished with a heat kernel measure,
- This is defined by choosing a base point, e.g. a constant loop, and constructing
a ‘Brownian motion’ on the loop space starting at that point, running it for some
fixed time, 7 say, and using its probability distribution as py. This will depend
on 7 and for free loops an extra averaging over the initial base point to retain
Slinvariance is needed. The construction of such Brownian motions goes back
to Baxendale, see [6] and Gaveau & Mazet, [34] but has been most developed for
loop groups, [51]. For based paths on a compact simply connected Lie group this
measure has been shown to be equivalent to the Brownian Bridge measure, [3].

In these contexts, by results of several people including M. P. & P. Malliavin,
Driver, Hsu, Leandre, Enchev & Stroock, and Aida there are integration by parts
formulae and associated Sobolev spaces based on Bismut tangent spaces defined
similarly to those above, though for Lie groups flat connections are often used to
define the Bismut tangent spaces. For the Brownian bridge and Bismut measures
there are cohomology results: using stochastic Chen forms in [40], ‘Sobolev dif-
ferential forms’ [47], and more recently ‘Chen-Souriau cohomology’ defined via a
‘stochastic diffeology’, see [48]. In general the resulting cohomology agrees with
the usual singular real cohomology. We refer the reader to MathScinet to see the
variety of constructions in these and related situations by R. Leandre.

For compact Lie groups with bi-invariant metrics, and with Bismut tangent
spaces defined by flat left, or right, invariant connections, Fang& Franchi were
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able to extend their results for path spaces to based loops defining Hodge-Kodaira
operators on forms and giving a ‘Weitzenbock formulae’ for them, [30]. This for-
mula rather clearly shows the form of these operators as ‘Witten’ or ‘Bismut’
Laplacians where the ‘perturbing’ vector field is not an H-vector field, and gives
rise to stochastic integrals in the formulae. The curvature part of the formulae has
a Ricci term, which requires a careful summation, as in [32].

One striking result for the Brownian bridge measure is the following by Eberle:

Theorem 4.1 ([16]). Suppose the compact manifold M has a closed geodesic for
which there is a neighbourhood in M of constant negative curvature. Then on the
loop spaces Cyy o, with Brownian bridge measure, and L(M) with Bismut measure,
the self-adjoint operator L = —d*d does not have a spectral gap.

Spectral gaps for the Hodge-Kodaira ‘Laplacians’ are important in Hodge the-
ory since they correspond to the (exterior) derivative operators having closed range
in L2. At present it is unknown if there is ever a spectral gap for £ for these
measures for loops on non-flat manifolds, e.g. on spheres. However for heat ker-
nel measures on compact Lie groups with bi-invariant metrics Driver & Lohrenz
proved the existence of a Log Sobolev inequality and so of a spectral gap for L,
see [29].

An alternative approach to based loops has been to represent them by ‘subman-
ifolds’ of classical Wiener space by choosing a suitable (i.e. a quasi-continuous)
version of the stochastic development and considering the inverse image C~', say,
under it, of the based loops on M. This construction is dependent on ‘quasi-sure’
analysis, see [50], where our measure theoretic concepts are refined potential theo-
retically, so that C can be defined up to sets of capacity zero. To a certain extent
this allows C' to be treated as a submanifold of co-dimension the dimension of M,
with a differential form theory and Weitzenbock formula, see [41], and [45].
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